

Heusler-alloy-based CPP-GMR devices with high MR outputs

K. Hono

Magnetic Materials Unit National Institute for Materials Science (NIMS) Tsukuba 305-0047, Japan

Collaborators

T. Furubayashi, Y. Sakuraba, Y. K. Takahashi S. T. Li, J. Chen, Du Ye, T. T. Sasaki

http://www.nims.go.jp/mmu/

Read head for >2 Tbit/in²

Search for highly spinpolarized FM alloys

Tc, order-disorder temperature, melting point

Spin polarization measured by PCAR

Quaternary alloys	P(%)	Ref.
Co ₂ Mn(Ge _{0.75} Ga _{0.25})	74	1
Co ₂ Mn(Ga _{0.5} Sn _{0.5})	72	2
Co ₂ Fe(Si _{0.75} Ge _{0.25})	70	3
Co ₂ Fe(Ga _{0.5} Ge _{0.5})	68	4
Co ₂ (Cr _{0.02} Fe _{0.98})Ga	67	5
Co ₂ Mn(GeSn)	67	6
Co ₂ (Mn _{0.95} Fe _{0.05})Sn	65	7
(Co, Fe) ₂ MnGe	65	8
Co ₂ (Mn _{0.5} Fe _{0.5})Ga	65	9
Co ₂ (Cr _{0.02} Fe _{0.98})Si	65	10
Co ₂ Mn(Ti,Sn)	64	11
Co ₂ Mn(Al _{0.5} Sn _{0.5})	63	12
Co ₂ Mn(Ga _x Si _{1-x})	63	13
Co ₂ Fe(Al.Ga)	63	14
Co ₂ Mn(SiGe)	63	15
Co ₂ (Mn _{0.5} Fe _{0.5})Si	61	16
Co ₂ (Cr,Fe)Al	60	17
Co ₂ Mn(Al _{0.5} Si _{0.5})	60	18
Co ₂ Fe(Ga _{0.5} Si _{0.5})	60	19
Co ₂ Fe(Al _{0.5} Si _{0.5})	60	20

Ternary alloys	Р	Ref.
Co ₂ MnSi	56	21
Co ₂ MnGe	58	1
Co ₂ MnSn	60	12
Co ₂ MnAl	60	12
Co ₂ MnGa	60	1
Co ₂ CrAl	62	17
Co ₂ FeAl	59	17
Co ₂ FeSi	60	10
Co ₂ FeGa	58	22
Co ₂ CrGa	61	23
Co ₂ TiSn	57	24
Co ₂ VAI	48	25
Fe ₂ VAI	56	25
-		

Metals and binary	Ρ	Ref.
Fe	46	
Со	45	
FeCo	50	
Co ₇₅ Fe ₂₅	58	
B2-FeCo	60	
[Co/Pd] _n	60	
Fe ₄ N	59	26
Co/Pt	56	27

B. Varaprasad et al., APEX3 023002 (2010).
B. Varaprasad et al., Acta Matel.57 2702 (2009).
A. Rajanikanth et al., JAP103 103904 (2008).
S.V. Karthik et al., JAP102 043903 (2007).
A. Rajanikanth et al., JAP101 09J508 (2007).
S.V. Karthik et al., APL89 052505 (2006).
T.M. Nakatani et al., JAP105 063916 (2007).
A. Rajanikanth et al., JAP105 063916 (2007).
S.V. Karthik et al., ACta Matel.55 3867 (2007).
A. Narahara et al., ACta Matel.55 3867 (2007).
A. Rajanikanth et al., APL94 202502 (2009).
A. Rajanikanth et al., APL94 202505 (2010).
S. 9, 11, 13-17, 18-20, 22, 24. To be submitted

V. Varaprasad et al. Acta Mater (2012).

S. Li, Y.K. Takahashi, T. Furubayashi, and K. Hono, APL 103, 042405 (2013).

S. Li, Y.K. Takahashi, T. Furubayashi, and K. Hono, APL 103, 042405 (2013).

Origin of T dependence of *ARA*

$$\Delta RA \approx 2\rho_F \frac{\beta^2}{1-\beta^2} t_F + 4AR_{F/N} \frac{\gamma^2}{1-\gamma^2}$$

Which contributes to T-dependence of ΔRA , β or γ ?

Eveluation of β using AMR measurements

Anisotropy magnetoresistance (AMR)

Y. Sakuraba et al. APL104, 172407 (2014).

β of CFGG does not degrade at RT!

Y. Sakuraba et a. APL104, 172407 (2014).

T dependence of μ_{Co} at CMS & CFS/Ag interfaces

How to suppress the reduction of spin moment at Hesuer/Ag interface?

Insersion of thin FM layer for increasing exchange stiffness

N. Hase et al. JAP 109, 07E112 (2011).

Band matching at FM/NM interface

small $R^{\Psi}_{F/N}$ for up spin large $R^{\uparrow}_{F/N}$ for down spin \rightarrow large MR ratios

CFGG/CuZn/CFGG PSV

MgO/Cr(10)/Ag(100)/Co2FeGa0.5Ge0.5(10)/CuZn(5)/Co2FeGa0.5Ge0.5(10)/Ag(5)/Ru(8) (nm)

*H.S. Goripati at al., J. Appl. Phys., 113. 043901 (2013).

T. Furubayashi et al. JAP, submitted.

Why CuZn spacer causes high ΔRA at low T_a ?

CuZn spacer is replaced with Ag spacer by interdiffusion!

$$\Delta RA \approx 2\rho_F \frac{\beta^2}{1-\beta^2} t_F + 4A \frac{R_{F/N}}{1-\gamma^2} \frac{\gamma^2}{1-\gamma^2}$$

- larger R_PA compared to Ag space → R_{F/N}↑
- fast Zn diffusion may be responsible for high ΔRA at low T_a, 350°C

Selection of an appropriate spacer give large ΔRA – need of new materials search

Y. Du et al. APL, submitted.

T_{an}=350°C T_{an}=630°C As-dep. Spacer: B2 Spacer: fcc Spacer: fcc Ru Ag **B2-CFGG** <100 **B2-CFGG** 7 A <110 €E2GGCFGG B2-AgZn fcc-Ag foc-Ag B2-CFGG **B2-CFGG** QF2GGCFGG Z.A. <110 10 nm 10 nm 10 nm Ag CFGG: B2 CFGG: B2 CFGG: L21 <100

J. W. Jung, MMM-Intermag Joint 2016.

Structure of each layer in CFGG/XY/CFGG

Heusler alloy based CPP-GMR

J.Chen et al. JAP, 115, 233905 (2014).

Polycrystalline CFAS PSV

T. Nakatani

T.M. Nakatani et al. Acta Mater. 61, 3695 (2013).

(001) polycrystalline PSV: MTO buffer

Si-SiO₂ subs./Ta/Cu(250)/Ta/NiTa/Mg_{0.5}Ti_{0.5}O buffer

(001)-oriented device show higher DRA compared to (011)-oriented

Y. Du et al., APL 103, 202401 (2013).

in collaboration with AIST

Acknowledgement

Y. Sakuraba Y. K. Takahashi

T. Furubayashi

T. Nakatani (now HGST)

Ye Du

J. Chen

Ikhtiar

J. W. Jung