Spintronic Logic and Memory Devices: Prospects and Challenges

Ian Young

Senior Fellow, Technology and Manufacturing Group, Director, Exploratory Integrated Circuits, Components Research

> Intel Corporation Hillsboro, Oregon

Why are we looking beyond CMOS?

Computation Efficiency needs max. performance at lowest supply (V_{dd})

- Switching Energy α CV_{dd}²
- At $V_{dd} \leq V_{th}$, performance suffers significantly
- Lowest V_{th} is limited by leakage
- Computation efficiency of CMOS limited by 60 mV/dec I_d/V_{gs} sub-threshold Slope

Agenda

- 1) Introduction
 - □ the need for a Beyond-CMOS Logic Device

2) Spintronics and All-Spin Logic

- Operation
- Modeling
- □ Spin Logic Circuit Simulation
- 3) Materials and Interfaces to enable scaling

Barriers, Collectives, Thermodynamics

Generic Electronic Switch

$$E = Ne\Delta V \sim 4000 kT \quad I_{on}/I_{off} < e^{\frac{e\Delta V}{kT}}$$

Generic Spintronic Switch $E = \frac{1}{2} \mu_0 V M_s H_k \sim 60 kT$

	Generic Electronic Switch	Generic Spintronic Switch
Barrier	20 kT at V_{dd} = 0.5 V	60 kT (Non-volatile)
Voltage	0.5 – 1 V	10-100 mV
Switching Energy	N*20kT, N=200 electrons	60-80 kT
Phenomenon	Non collective	Collective

2. Spin Logic and Circuit Exploration

Spin logic device based on spin torque

Proposed all spin logic device

ASL-Purdue, STMG-Intel

Injected current

An example Spin logic device schematic

The dominant magnet injects net spin into the output forcing output to align

Exploring Spin Logic Devices

- 1. Modeling the spin devices and circuits
- 2. Extracting the scaling methods for spin logic (using 1)
- 3. Realizing the materials and interfaces (guided by 2)

Describing Spin currents, Voltages, Conductances

Vector spin current is the net flow of vector magnetic moment between the nodes

Spin voltage is proportional to the net spin population

Spin circuit theory is simply the book keeping of spin currents imposed by spin transport

Inverting/Non-inverting Gate : "*spin-SPICE" Example*

Manipatruni, S., Nikonov, D. E., & Young, I. A. (2012). Modeling and Design of Spintronic Integrated Circuits. Circuits and Systems I: Regular Papers, IEEE Transactions on, 59(12), 2801-2814.

Inverting Gate : "*spin-SPICE" Results*

Majority Logic input [1 1 0] Output [1]

Spin Logic is compatible with high fan in logic

Calayir, V., Nikonov, D., Manipatruni, S., & Young, I. A. TCAS 2013

Spin State Elements and Machines

State element is an essential but often overlooked component.

Spin State Elements

C-SPIN Workshop on Heusler Alloys for Spintronic Devices, University of Minnesota, Sept 30-31, 2015

intel

Exploring Spin Logic Devices

- 1. Modeling the spin devices and circuits
- 2. Extracting the scaling methods for spin logic (using 1)
- 3. Realizing the materials and interfaces (guided by 2)

Method 1: Scaling with PMA for Spin Logic Devices

Perpendicular magnetic materials are a wide class of materials with promising performance improvement for area and Energy-Delay

Manipatruni, Sasikanth, Dmitri E. Nikonov, and Ian A. Young. "Material Targets for Scaling All Spin Logic." arXiv preprint arXiv:1212.3362 (2012).

Method 2: Scaling by M_s vs H_k Tradeoff

Perpendicular magnetic materials may also enable individual control on M_s and H_k allowing for improved performance.

Manipatruni, Sasikanth, Dmitri E. Nikonov, and Ian A. Young. "Material Targets for Scaling All Spin Logic." arXiv preprint arXiv:1212.3362 (2012).

Method 3: Scaling by Interface Engineering

Interface properties play a very critical role in the net performance of the device.

Manipatruni, Sasikanth, Dmitri E. Nikonov, and Ian A. Young. "Material Targets for Scaling All Spin Logic." arXiv preprint arXiv:1212.3362 (2012).

Opportunity for material exploration : ASL Material Scaling Methods

В		In-plane	РМА	Improved PMA	Improved PMA + Interface
Energy-delay	aJ.ns	6400	170	10	2
M _s	(A/m)	10 ⁶	10 ⁶	250X10 ³	250X10 ³
H _k	(A/m)	3X10 ⁴	4X10 ⁴	16X10 ⁴	16X10 ⁴
G _{spin-mix}	(μm ⁻² Ω ⁻¹)	550	550	550	2200

<u>Reference:</u> Manipatruni, Sasikanth, Dmitri E. Nikonov, and Ian A. Young. "Material Targets for Scaling All Spin Logic." arXiv preprint arXiv:1212.3362 (2012).

ASL Imporvement

D. E. Nikonov, I. A. Young, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2015

Exploring Spin Logic Devices

- 1. Modeling the spin devices and circuits
- 2. Extracting the scaling methods for spin logic (using 1)
- 3. Realizing the materials and interfaces (guided by 2)

Materials and Interfaces Play A Critical Role in Spin Devices

Example 1 : Δ_1 spin filtering in MgO

Appl. Phys. Lett. 91, 062516 (2007)

Ab-initio models with strong experimental co-ordination is essential to discover and engineer spintronic materials for devices.

Nature Materials 3, 868 - 871 (2004) A. Roy, D. Nikonov, I.A. Young, JAP 2011

Materials And Interfaces Play A Critical Role in Spin Devices

Example 2 : Sensitivity in Fe-Co Phase diagram

Ab-initio models with strong experimental co-ordination is essential to discover and engineer spintronic materials for devices.

C-SPIN Workshop on Heusler Alloys for Spintronic Devices
University of Minnesota, Sept 30-31, 2015

3. Improving All Spin Logic with New Materials

Heusler Alloys : Magnetic Material For Scaled Spin Valves

Heusler alloys enable high intrinsic spin polarization 70 % - \sim 100% <u>Without</u> the need for tunneling electrodes. Path for highly scaled (10 nm dots) with RA < 0.1 Ohm.um²

EHT Modeling of Transport in Heusler spin devices, G. Shine et al SISPAD 2014

Heusler Alloys: Magnetic Material Mn₃Ga For Scaled Spin Valves

partial	magnet	ic mome	ents (Bol	hr magnetor	ıs):
<u>Atom</u>	S	р	d	<u>total</u>	
Mn#1	-0.037	-0.030	-2.692	-2.759	
Mn#2	0.018	-0.014	2.224	2.255 x2	
Ga	-0.020	-0.032	0.004	-0.048	

Magnetic moment : VASP* calc. = 1.745 μ_B * DFT tool

Low Ms Due to compensation.

Heusler alloys enable 1. High intrinsic spin polarization -> 70 % - ~100% 2. High perpendicular magnetic anisotropy (H_k > 10000 Oe) 3. High injection efficiency with no tunnel barrier

EHT Modeling of Transport in Heusler spin devices, G. Shine SISPAD 2014

Heusler Alloy Magnetic Devices for Spin Logic

Need to integrate Heuslers in MRAM and Spintronics for 1. Low Ms and high Hk -> Improved retention / Write Error rate 2. Improve spin Polarization -> higher GMR 3. Lower RA to enable voltage scaling > VALUE PROPOSITION FOR HEUSLERS

Appl. Phys. Lett. 100, 052405 (2012)

Heusler Alloy Magnetic Devices for Spin Logic

Atomistic modeling shows the potential 1. CFGG/Ag good interface alignment like CoFeB/MgO. 2. Need GMR research with Heusler alloys on metals

An Outlook for scaling MRAM/Spin Logic

For PMA, Dot size sets H_k $E_b = \frac{1}{2} \mu_0 M_s H_k t (volume)$ Nominal $M_s = 10^6 \text{ A/m}$ H_k

RA scaling - Dot Scaling

Voltage scaling

$$V_{Ap-MTJ} = \frac{4(RA)}{\eta_{round}d^2} (1 + TMR(V)) I_{drive} \le 0.9V$$

Polarization loss around 0.9V

Resistance of MTJ scales with d^2 at fixed RA. Write voltage (AP-P) scales as square of dot diameter at fixed RA.

A Heusler based Outlook for scaling MRAM/Spin Logic

For PMA, Dot size sets H_k

$$E_b = \frac{1}{2} \mu_0 M_s H_k t (volume) \qquad \longrightarrow \qquad \frac{M_s}{n} \quad n H_k$$

RA scaling - Dot Scaling

Voltage scaling

$$V_{Ap-MTJ} = \frac{4(RA)}{\eta_{round}d^2} (1 + GMR(V)) I_{drive} \le 0.1V$$

Polarization loss around 0.1V

The above described Heusler alloy scaling path may provide a way to continued scaling.

Conclusion

- Functional blocks for an all spin logic exist & are verified by simulations.
- Material optimization may enable ASL energy-delay comparable with CMOS with added non-volatility & logic efficiency.
- Material and interface understanding with ab-initio models and experiments are the key to enabling spin logic.

....and one more thing!

<u>Non-volatility</u> for Embedded Memory and Logic:

Magnetic Energy Landscape and Noise

Origin of the magnetic retention/write/read failure is thermal noise which continuously perturbs the magnet's internal field.

Switching Speed of MRAM/STT Comprehending Dynamic Variations

C-SPIN Workshop on Heusler Alloys for Spintronic Devices, University of Minnesota, Sept 30-31, 2015

intel

Modeling Langevin Noise: Write Error Rates

$$\overline{H}_{eff}(T) = \overline{H}_{eff} + Noise$$

$$\tau = \frac{\tau_0 \ln(\pi/2\theta_0)}{\left(I/I_c - 1\right)}$$

Butler, Fischer et al TMAG Dec 2012

Langevin Noise model provides a strong variability limitation to MTJ operating speed.

Write and Read Error Rates in STT/MRAM

Write Pulse Width (normalized)

Write Error Rate

Read Error Rate

Dynamic variations can be a significant factor in the performance of spin logic/memory. Accurate modeling is required to quantify and mitigate.

e.g. Butler, Fischer et al TMAG Dec 2012

Write and Read Error Rates in MRAM

Write Pulse Width (normalized)

Write Error Rate

Read Error Rate

Write and read of an MRAM bit is not ideal. A simple reset would not be sufficient. Hence a quantitative scheme for retention error management is necessary.

e.g. Butler, Fischer et al TMAG Dec 2012

Resetting MRAM can enable low retention failure rate

Finite read error rate and finite write error rate complicate the scenarios.

Manipatruni, Nikonov, Young MMM 2015

(Scenario 1) Resetting MRAM: RDR>WER

Case 1 (RDR > WER): read, ECC and Rewrite of all bits is preferred.

Manipatruni, Nikonov, Young MMM 2015

(Scenario 1) Resetting MRAM: RDR>WER

If (RDR > WER): read, ECC and Rewrite of all bits is preferred. This is highly energy inefficient.

Manipatruni, Nikonov, Young MMM 2015

(Scenario 2) Resetting MRAM: RDR<WER

Case 2 (RDR<WER) : Read, ECC and Rewrite of the failing bit only is preferred.

If RDR < WER, an energy efficient method for MRAM reset can be implemented.

Manipatruni, Nikonov, Young MMM 2015

Conclusion

- Functional blocks for an all spin logic exist & are verified by simulations.
- Material optimization may enable ASL energy-delay comparable with CMOS with added non-volatility & logic efficiency.
- Material and interface understanding with ab-initio models and experiments are the key to enabling spin logic.

