Modeling Transport in Heusler-based Spin Devices

Gautam Shine (Stanford)

S. Manipatruni, A. Chaudhry, D. E. Nikonov, I. A. Young (Intel)

Electronic Structure

- Extended Hückel theory
- Application to Heusler alloys (Co₂FeAl)

Transport

- Non-equilibrium Green's functions
- Transport calculations in CFA/MgO/CFA structures

Magnetic Tunnel Junctions

Various Bloch states tunnel incoherently.

Crystalline MgO(001) barrier

4-fold symmetry

Only the Bloch states with Δ_1 symmetry tunnel dominantly.

Heusler Alloys

- Choice of electrode material represents an opportunity
- Several full Heusler alloys (X₂YZ) are half-metallic
- Our experience with a half-metal: Co₂FeAl (CFA)

Co₂TiGe from J. Barth et al., Phil. Trans. R. Soc. A, 369, 3588-3601 (2011)

Project Goals

MTJ physics at equilibrium has been well-studied using *ab initio*

We hope to take it a step further by:

- Modeling non-equilibrium transport to study device behavior under bias
- Assessing the impact of defects on device performance

SRC Review 4/15/2015

Hierarchy of Models

5

Extended Hückel Theory

Atomic Configuration -> H, S Matrices

$$\psi_{n,l,m} = c_1 R_{n,\zeta_1} Y_{l,m} + c_2 R_{n,\zeta_2} Y_{l,m}$$

EHT Hamiltonian

$$H_{ii} = E_{onsite}$$

$$H_{ij} = K S_{ij} (H_{ii} + H_{jj})/2$$

$$S_{ij} = \langle \psi_i | \psi_j \rangle$$

$$\psi_{n,l,m} = c_1 R_{n,\zeta_1} Y_{l,m} + c_2 R_{n,\zeta_2} Y_{l,m}$$

d-s overlap (vanishes)

Transferability?

CFA minority spin E-k with elemental metal parameters – i.e. no attempt at fitting

Band Gap Correction

DFT underestimates band gap as usual; need +U

EHT v. DFT: Co₂FeAl

E-k fit is accurate over a very wide energy range

Crystal Field Splitting

Broken spherical symmetry

- Orbital degeneracy lifted
- e_g group: d_{x2-y2} d_{z2}
- t_{2g} group: $d_{xy} d_{yz} d_{zx}$

Adapting tight-binding

- Onsite energies must be resolved by the m quantum number
- 1-2 extra parameters in EHT

Case of full Heusler alloys

- X_2 YZ has T_d symmetry
- But lattice of X atoms has the broader O_h symmetry

I. Galanakis et al., Phys. Rev. B 66, 174429 (2002)

Orbital Projections

Non-equilibrium Green's Functions

NEGF consists of a set of integro-differential equations (in time) or matrix equations (in energy)

Landauer Formalism

Landauer formalism with transmission computed using Green's functions:

$$J = \frac{q}{h} \int dE \ T(E) \ (f_1 - f_2)$$
$$T(E) = Tr[\Gamma_1 \ G \ \Gamma_2 \ G^{\dagger}]$$
$$G(E) = [(E + i0^+)S - H - U - \Sigma_1 - \Sigma_2]^{-1}$$

Periodicity permits working in k-space:

$$H(\vec{k_{\parallel}}) = \sum_{\vec{r}} H(\vec{r}) \ e^{i\vec{k_{\parallel}}\cdot\vec{r}}$$

CFA/MgO/CFA Transmission

Same broad Δ_1 -like peak in parallel majority T(E_F) Much lower minority and anti-parallel T(E_F)

CFA and Fe MTJs: J-V

Anti-parallel current nicely suppressed up very high biases

- We pay a price in resistance-area (RA)
 - 1. Lower signal-to-noise ratio (SNR)
 - 2. Bad for scaling!

Voltage (V)

Fluctuation Spin Mixing

$$\langle I_{AP} \rangle = I_{AP} + \frac{\left(I_P - I_{AP}\right)}{8\Delta} \quad \langle I_P \rangle = I_P + \frac{\left(I_{AP} - I_P\right)}{8\Delta}$$

CFA and Fe MTJs: TMR

Half-metal benefits TMR across a wide bias range

 A consequence of the ~1 eV minority gap

Thermal spin flips lower TMR but not dramatically

 i.e. we must have spin flipping processes besides thermal energy

Vacancy Defects

Fe/MgO/Fe is known to be degraded by oxygen vacancies, borne out in experiments and theory

O Vacancy (AI)

Conclusions

- We find the E-k of Co₂FeAl to be well reproduced by extended Hückel theory
 - EHT proves to have high transferability
 - Crystal field splitting needs to be taken into account
 - Generalizable to other L21 Heusler alloys
 - Paves the way for engineering-scale modeling
- Ideal crystals show superior properties across a wide bias range, but far from reality
 - TMR much higher, but so is RA
 - Simple picture of temperature-induced spin flips do not account for experimental values
- Oxygen vacancies do not have the same effect as on Fe/MgO/Fe structures
 - The quality of the Heusler alloy films possibly plays a greater role than the oxide interfaces

Thank you.

Questions?

gshine@stanford.edu dmitri.e.nikonov@intel.com

Free Parameters

Parameter	Interpretation			
E _{Onsite}	Ionization energy			
C ₁ , C ₂	LCAO coefficients			
ζ_{1}, ζ_{2}	Radial decay strength			
К _{ЕНТ}				
extra E _{Onsite}	Crystal field splitting			

$$\psi_{n,l,m} = c_1 R_{n,\zeta_1} Y_{l,m} + c_2 R_{n,\zeta_2} Y_{l,m}$$

$$R(r, n, \zeta) = (2\zeta)^n \left(\frac{2\zeta}{(2n)!}\right)^{1/2} r^{n-1} e^{-\zeta r}$$

$$Y_{l}^{m}(\theta,\phi) = \left[\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!}\right]^{1/2} P_{l}^{m}(\cos\theta)e^{im\phi}$$

TABLE I. Slater-type orbital parameters for EHT.

Atom O	rbital	E_{onsite}	ζ_1	c_1	ζ_2	c_2
Co $4s$		-9.08194	1.55335	0.90903		
maj $4p$)	-6.47874	1.23006	0.76289		
3d	e_g	-12.52229	1.79648	0.49542	3.15170	-0.29220
3d	$t: t_{2g}$	-12.28094				
Co $4s$		-9.06115	1.47081	1.00122		
$\min 4p$)	-5.69197	1.30977	0.75543		
3d	e_g	-9.99179	2.23952	0.54039	2.54008	0.47420
3d	$t: t_{2g}$	-10.94967				
Fe $4s$		-9.32601	1.72377	0.64710		
maj $4p$)	-7.17093	1.21583	0.58874		
3d	e_g	-13.79933	1.76803	0.19158	2.65159	0.55383
3d	$t: t_{2g}$	-13.42214				
Fe $4s$		-12.61727	1.36962	0.51054		
min $4p$)	-7.01363	1.31013	0.80327		
3d	e_g	-9.70934	1.48670	0.52120	2.58892	-0.34367
3d	t_{2g}	-10.50984				
Al 3 <i>s</i>	U U	-9.89636	1.83633	0.78624		
maj $3p$)	-7.67787	1.29712	0.80058		
3d	!	-4.38275	0.95234	0.89036		
Al 3s		-10.02916	1.86711	0.99474		
min $3p$)	-7.39278	1.39211	0.91397		
3d	!	-4.72923	0.89174	0.74137		
Mg $3s$		-6.13538	1.19399	0.92777		
$\overline{3p}$,	-5.35848	0.79858	0.62475		
O $2s$		-22.99335	3.17712	1.00000		
2p		-15.75406	1.85529	1.00000		

Fermi level set to -10 eV. e_g is $d_{z^2}, d_{x^2-y^2}$ and t_{2g} is d_{xy}, d_{yz}, d_{xz} .