Fakultät für PhysikUniversität BielefeldCENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

HEUSLER COMPOUNDS (AND RELATED) IN MAGNETIC TUNNEL JUNCTIONS

G. Reiss¹, J. Schmalhorst¹, M. Meinert¹, A. Thomas^{1, 5}, T. Kuschel¹,

¹Bielefeld University, F ²IV. Physikalisches Institut, Ur ³ Physikalisch-Technische Bu

M. Münzenberg², H.-W. Schumacher³, A. Gupta⁴

Collaborations:

C. Felser, Mainz and Dresden / S. Demokritov, Münster / K. Nielsch, Hamburg / H. Brückl, Krems / J. Moodera, Cambridge / Elke Arenholz, ALS Berkeley Siemens AG / Intel Corp. / Bosch / Singulus / Sensitec

Funding

C-SP[†]

DFG Priority Programme SpinCat

N Heusler Alloys for Spintronic Devices July 30, 2015

FAQ's: Where is Bielefeld ?

Introduction

Enhanced MR is very general in very thin (1nm) layered structures:

Fakultät für Physik Universität Bielefeld Center For Spinelectronic Materials and Devices

The reference-ultrathin

The samples:

MTJ stack sequence for this study: pseudo-spinvalves with ultrathin CoFeB and varying MgO

Magnetic Tunnel Junctions with ultrathin CoFeB are perpendicular

Fig. 1. HRTEM images of a thick 10 ML (left) and a heated 3 ML MgO barrier (right). The IQR values are $(5.6 \pm 1.5)^{\circ}$ (10 ML) and $(6.7 \pm 0.8)^{\circ}$ (3 ML).

and work down to MgO barrierthickness of 3 monolayers

<u>The reference– ultrathin</u> <u>CoFeB STT switching</u>

Results for STT-switching this ultrathin CoFeB/MgO/CoFeB system for low-RA MgO and small junctions:

Resistance vs. external magnetic field for perpendicular MTJs 1.0nm CoFeB / 4 ML MgO / 1.2nm CoFeB gives around 40-50% TMR

RV-characteristic with an applied field of 8.6 mT - average critical current density: $\frac{2 \cdot 10^5 \text{ A/cm}^2 (!!)}{2 \cdot 10^5 \text{ A/cm}^2 (!!)}$

Now we have a working and stable STT-MRAM

Fakultät für Physik Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

Collaboration with M. Münzenberg group

1. the layers change their role .. low T: thick layer is the free layer high T: thin layer is free

2. the thin layer shows $H_C^{\perp} = 0$? anisotropy switches to ip <u>or</u> ? superparamagnetic

The reference – ultrathin

CoFeB low current STT

Critical current for STT switching the MTJ as a function of temperature (collaboration with M. Münzenberg group)

.. nearly zero critical current density possible by controlling temperature¹ - ? good for TAS-STT-MRAM²

¹to be published, ²see I.L. Prejbeanu et.al., J. Phys. D: Appl. Phys. 46 (2013) 074002 (Spintec / Crocus)

Fakultät für Physik Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

<u>The reference – ultrathin</u> <u>CoFeB E-field shift of H_c</u>

(b)Electric field leading to a magnetization switching at an applied bias field H_o (A. Gebauer, Bachelor thesis, publication in preparation)

... H_c shift about four times larger for 1.0nm than for 1.2nm CoFeB ... Open: temperature dependence, possible synergy with STT ...

But:

- → "Ultrathin" requires expensive equipment and process control
- The perpendicular magnetization comes from the interfaces between MgO and CoFeB (sensitive property)
- → Thin CoFeB has a relatively large magnetic damping (speed issue !)
- \rightarrow Base layer (antiferromagnet) is expensive

Cap / Wiring	
CoFeB free layer	
MgO tunnel barrier	
CoFeB fixed layer	
Ru	
CoFe	
Base layer	
Substrate	

Why look for new

Materials

ightarrow production window, relatively expensive, low speed

Need new materials !

New Materials – Heusler

Fakultät für Physik Universität Bielefeld Center for Spinelectronic Materials and Devices

<u>compounds</u>

N. Tezuka et al., Appl. Phys. Lett. **94**, 162504 (2009)

P. Webster, J. Phys. Chem. Solids **32**, 1221 (1971)

Bielefeld University contributes > 20 "Heusler" publications since 2006 D. Ebke, PhD thesis (2010) <u>Heusler compounds</u>
(and related):
X₂YZ composition
crystallographic L2₁ structure
high spin polarization / TMR ratios
high Curie temperature T_C

well known with in plane

magnetization

<u>New Materials – Heusler</u>

<u>compounds</u>

General goals:

- thermal stability (KV > $50 60 \text{ k}_{\text{B}}\text{T}$)
- switching current low (0.1-1 MA/cm²)
- TMR ratio (100 200% @ RT, better more)
- fast (nsec or faster)
- cheap, reliable, easy to prepare, ...

Heusler electrodes in TMR cells with in plane anisotropy

Very large TMR possible: H.X. Liu et.al., Appl. Phys. Lett. 101, 132418 (2012) (2000% @ LT, 350% @ RT, Co₂Mn_xSi, x=1.3)

Fakultät für Physik Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

New Materials: Ultrathin Heuslers

 \rightarrow Ultrathin Co₂FeAl Heusler compound on TiN gives smooth surface and perpendicular anisotropy

→ TiN is a good conductor, very stable (and superconducting)

Heusler with perpendicular cryst. anisotropy: <u>The Mn_xY family</u>

x = 0.1 .. 1.5

Example Mn_{3-x}Ga

- predicted high spin polarization (P=88%)
- perpendicular properties down to 5nm thickness
- high Curie temperature (T_C≈770K)
- Iow magnetic moment (about 0.26µB / f.u.)
- tunable magnetic behavior:
 - H_{C} decreases with increasing x (leak of Mn)

Fakultät für Physik Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

MgO STO (002) (002) (002) STO (003) (900) STO (001) 002) Mn_{2.9}Ga log intensity (cps) Mn_{2.6}Ga Mn_{2.3}Ga 20 24.6 30 50.4 79.2 40 60 70 90 Θ/2Θ (°) С 25x10³ .2 intensity (cps) STO FWHM (°) 0.8 MgO MgO STO 0 0.4 530 410 530 610 410 610 deposition temp. (°C) deposition temp. (°C)

New Materials: Mn_xGa

X-ray diffraction (left) of Mn_xGa and

roughness (top) for Mn_{2.9}Ga

Fakultät für Physik Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

New Materials: Mn_xGa

Overlay of magnetization (grey) and transversal Hall resistivity for Mn_{2.9}Ga deposited on MgO (top) and STO (bottom) substrates at 530°C.

Element-specific hysteresis loops. Dashed black → normalized Mn XMCD asymmetry for a sample with (without) 1 nm CoFeB @ RT, normal incidence, out-ofplane magnetic field. Blue curve → normalized Co XMCD asymmetry.

New Materials: Mn_xGa

- first reported TMR effect for perpendicular Mn-Ga compound¹
- highest TMR effect for samples with {Co/Pt}10 multilayer counter electrode
- other groups reported higher TMR effects for different interlayer²
- no post-annealing process took place
- reasonable TMR ratio only for samples with ferromagnetic interlayer

[1] Glas, Integration of Mn_{3-x}Ga Thin Films Into Magnetic Tunnel Junctions, Diploma Thesis, Bielefeld, 2012
 [2] Ma et al., J. Appl. Phys. 114, 163913 (2013).

Could work down to 5nm feature size !

New Materials: Mn_xGe

Mn_{3±x}Ge properties

- Mn_{3±x}Ge compound crystallises in D0₂₂ phase
- lattice constants:
 - a,b = 3.816Å
 - c = 7.261Å
- magnetic moment:
 - 0.4µB/f.u. corresponds to 175kAm⁻¹
- Anisotropy constant between 0.9 and 1.2MJm⁻³ was reported
- spin polarisation of 46% via point contact Andreev reflection
- no single crystal phase was obtained by other groups

New Materials: Mn_xGe

- D0₂₂ structure was achieved for different compositions
- Higher crystallinity for Mn rich samples
- Unknown reflex for the Mn_{3.6}Ge sample
- Highest H_c of 3.25T for Mn_{3.2}Ge
- upcoming in-plane component for Mn_{3.6}Ge
- critical Mn content achieved

Δ

CRYSTALLINE PROPERTIES

- deposition time = 220 sec
- thickness: d \approx 46 \pm 0.4 nm
- roughness (measured via XRR):
 ≈ 0.5 ± 0.05 nm
 (high Fe amount)
- low Fe amount leads to high roughness (measured by AFM)

low Fe amount

MAGNETIC PROPERTIES

- High H_c and **oop-magnetization** for deposition on SrTiO3 and low Fe amounts on MgO

New Materials: MnN

Markus Meinert group:

MnN

of the "Mn_xY - family" is antiferromagnetic and shows excellent exchange bias to CoFe:

A new exchange bias system !

FIG. 1. Hysteresis loops of a MnN/CoFe stack at RT. The film thicknesses were $t_{\rm MnN} = 30 \,\rm nm$ and $t_{\rm CoFe} = 1.5 \,\rm nm$. The sample was annealed at 325° for 15 min and field cooled. The definition of the exchange bias field $H_{\rm EB}$ is shown. With the external magnetic field perpendicular to the exchange biasing field no hysteresis shift is observed.

MnN grown by reactive sputtering with Ar/N₂ mixture

Can be grown on single crystalline substrates and on Si/SiO₂

See M. Meinert, M. Dunz, arXiv:1501.05162v1 [cond-mat.mtrl-sci]

New Materials: MnN

Fakultät für Physik

CoFe thickness (nm)

FIG. 2. Dependence of exchange bias field and coercive field on the film thicknesses. a, The dependence of $H_{\rm EB}$ and $H_{\rm C}$ on the MnN thickness. The CoFe thickness was 2.0 nm. b, The dependence of $H_{\rm EB}$ and $H_{\rm C}$ on the CoFe thickness. The MnN thickness was 30 nm. The samples were annealed at 325° for 15 min. Dotted lines are guides to the eye throughout this letter.

Dependence of the exchange bias field on annealing temperature and duration. The samples with MnN 30nm / CoFe 1.9nm were annealed and field cooled at temperature T_A for different times t_A . a, Samples successively heated for t_A with increasing temperature T_A . b, Same data, parametrized with annealing temperature T_A .

See M. Meinert, M. Dunz, arXiv:1501.05162v1 [cond-mat.mtrl-sci]

Spincaloritronics

Remember: Spin Transfer Torque:

Can we drive Spin Currents also by other external forces?

Spin Current is carried by electrons Electrons are driven by voltage

$$\vec{E} = -\nabla \Phi(\vec{r})$$

YES: Temperature differences $\Delta T = \nabla T(\vec{r})$

Seebeck coefficient for such tunnel devices:

$$=\frac{\int T(E)(E-\mu)(-\partial_E f(E,\mu,T))dE}{e T \int T(E)(-\partial_E f(E,\mu,T))dE}$$

 $\partial_E f(E, \mu, T)$: Derivative of occupation function

Thermovoltage should depend on magnetization directions Important: S unequal to conductivity $g = \frac{e^2}{h} \int T(E) \left(-\partial_E f(E, \mu, T)\right) dE$

Spincaloritronics : MTJs

Tunneling Magnetoresistance

and

Thermovoltage

of Magnetic Tunnel Junctions

M. Walter et.al., Nature Materials, 10 (2011) 742 (Münzenberg group Göttingen) N. Liebing et.al., Phys. Rev. Lett. 107 (2011) 177201 (Schumacher group Braunschweig)

Spincaloritronics : MTJs

Fakultät für Physik

Additional bias voltage at CoFeB/MgO/CoFeB tunnel-junctions: Tunnel Magneto Seebeck effects > 6000%

.. ongoing work

On/off switching of bit readout in bias-enhanced tunnel magneto-Seebeck effect

Alexander Boehnke, Marius Milnikel, Marvin von der Ehe, Christian Franz, Vladyslav Zbarsky, Michael Czerner, Karsten Rott, Andy Thomas, Christian Heiliger, Günter Reiss & Markus Münzenberg

Affiliations | Contributions | Corresponding author

Scientific Reports 5, Article number: 8945 | doi:10.1038/srep08945

Department of Physics Universität Bielefeld CENTER FOR SPINELECTRONIC MATERIALS AND DEVICES

Spincalorics : MTJs + Heuslers

b 1.4

-500 1.2 R (MΩ) 1.0 30 mV -1000 Z -1500 <mark>60 mW</mark> Seebeck voltage 0.8 -20 0 20 B (mT) -2000 С 90 mW 95 94 -2500 TMS 93 120 m (% 92 -3000 91 150 pa/W 90 -3500 -20 20 0 100 0 B (mT) P_{Laser} (mW) a) TMS reaches 90 ... 96 % comparable

а

Gap in one spin direction should increase not only TMR but also $S = \frac{\int T(E)(E - \mu) (-\partial_E f(E, \mu, T)) dE}{e T \int T(E) (-\partial_E f(E, \mu, T)) dE}$ (large asymmetry of DOS at E_F)

to TMR (b) c) Dependence of TMS ratio on applied laser power.

... ongoing experimental and theoretical work

Thanks

All coworkers in Bielefeld

Siemens AG, Sensitec, Prema, Qiagen, Singulus, ...

M. Münzenberg, Göttingen
H.-W. Schumacher, PTB Braunschweig
S. Demokritov, Münster
H. Ebert, München
C. Felser, G. Jacob, G. Fecher, Mainz
B. Hillebrands, Kaiserslautern
J. Moodera, Cambridge
C. Chappert, Paris
R. Cowburn, London, ...

Funding:

BMBF (German Ministry of Education and Research) DFG (German Research Society) NRW (Northrhine Westfalia) European Commission Thyssen Krupp Foundation Humboldt Foundation

