Electronic structure, spin transport and magnetic anisotropy of selected cubic Heusler and hexagonal Heusler like alloys

O. Mryasov^{1,2,3}

S. Faleev^{1,4}, A. Kalitsov^{1,3}, J. Barker^{1,5}

- 1. MINT Center, University of Alabama, AL, USA
- 2. Department of Physics , University of Alabama, USA
- 3. Western Digital, Advanced Technology, CA, USA
- 4. IBM, Almaden Research Center, San Jose
- 5. Tohoku University, IMR, Sendai Japan

07.30.15 : UMN - Keller - Hall - 3 - 176 : 3:10 pm

SCOPE : Combination of Properties

- Structure and composition X₂YZ, XYZ:
 - Variety of material
 - Mutli-functional properties

- Combination of Properties:
 - High spin polarization
 - Relatively high Curie point
 - Spin dependent transport
 - Magnetic anisotropy : bulk or interface

OUTLINE

- Tc : Comments on Disorder : spin disorder
- spin mixing Curie point calculations
- quaternary alloys strategy
- Eg: Electronic structure: minority band gap
 fundamental gap theory alloys design
- ρ_{up}/ρ_{dn} :Spin Dependent Transport : GMR - Band matching - Q-alloy effects
- K1 : Hexagonal Heusler like alloys :
- Magnetic Anisotropy
- Summary and Conclusions

Minority Band gap and Tc factor

OUTLINE

- Tc: Comments on Disorder : spin disorder
 spin mixing Curie point calculations
- quaternary alloys strategy
- Eg: Electronic structure: minority band gap
 fundamental gap theory alloys design
- pup /pdn :Spin Dependent Transport : GMR
 Band matching Q-alloy effects
- K1 : Hexagonal Heusler like alloys :
 Magnetic Anisotropy
- Summary and Conclusions

How to calculate M(T), K(T), P(T) ?

Effective Spin Hamiltonian approach

O. N. Mryasv et.al., EuroPhysics Letters, 69(5), p.805 (2005)

- statistical simulations/theory
- material specific parameterization

Spin Hamiltonian: Microscopic Definition

Two terms in the effective potential variation:

• Contributions to the total energy: $\delta E = \delta E^{EX} + \delta E^{DM} + \delta E^{MAE}$

$$E^{EX} = -\sum J_{ij} \vec{e}_i \vec{e}_j \quad E_{DM} = \sum D_{ij} [\vec{e}_i \times \vec{e}_j] \quad E^{MAE} = \sum \mathcal{E}_{ij}$$

Generalized constrained density functional theory

$$E_{ex} = AVq^2$$
 • Spin spiral excitations

$$A(x,T) = A(0,T)[1 - \lim_{q \to 0} <<\Delta E_{ss}(x,q) >_{x} >_{T} / < E_{ss}(0,q) >_{T}$$

O. Mryasov et.al Phys. Rev. B. 45, 12330 (1992)

• Constrained DFT calculations

$$-\frac{\hbar^2}{2m}\nabla^2 + V_{eff}(\vec{r}) \left[\varphi_i(\vec{r}) = \varepsilon_i \varphi_i(\vec{r})\right]$$

1

$$E_{CLDA}[\rho, B, h_{\perp}] = E_{LDA}[\rho, B] + E_{Const}[\rho, h_{\perp}]$$

Multi-sub-lattice mean field

r		
	Tc (Experiment)	Tc (Theory)
	(K)	(K)
Fe (bcc)	1040	1080
Co (fcc)	1400	1533
Co2FeGe	1000	1062
Co2MnGe	905	867
Co2FeSi	1120	1047
Co2MnSi	985	963
Co2FeAI	1000	1298
Co2MnAl	693	590

• Y = Fe vs. Mn - approach to increase Tc Q: How this changes band gaps

Tc calculations beyond mean field

Mean field theory for Two sub-lattice magnets:

$$T_{\rm C} = \frac{1}{2}(T_{\rm TT} + T_{\rm RR}) + \sqrt{\frac{1}{4}(T_{\rm TT} - T_{\rm RR})^2 + T_{\rm RT}^2}$$

NiMnSb alloy test Experimental Tc about 780 K

O.N. Mryasov, A.J. Freeman, A.I. Liechtenstein JAP. 79 (8): 4805-4807 (1996).

OUTLINE

- Tc : Comments on Disorder : spin disorder
 spin mixing Curie point calculations
 quaternary alloys strategy
- Eg: Electronic structure: minority band gap
 fundamental gap theory alloys design
- pup /pdn :Spin Dependent Transport : GMR
 Band matching Q-alloy effects
- K1 : Hexagonal Heusler like alloys :
 Magnetic Anisotropy
- Summary and Conclusions

Challenaes : MF vs. RPA or LDA vs. QSGW

Schilfgaarde, Kotani, Faleev PRL 96, 26402 (2006)

LDA is a mean field type of approach

$$\left(-\frac{\nabla^2}{2m}+V_{nuc}(r)+V_{H}(r)+V_{xc}^{LDA}(\rho(r))\right)\Psi_{kn}(r)=\varepsilon_{kn}\Psi_{kn}(r)$$

GW approach is based on many-body theory

$$-\frac{\nabla^2}{2m} + V_{nuc}(r) + V_H(r) \bigg) \Psi_{\mathbf{k}n}(r) + \int dr \Sigma(r, r', \varepsilon_{\mathbf{k}n}) \Psi_{\mathbf{k}n}(r') = \varepsilon_{\mathbf{k}n} \Psi_{\mathbf{k}n}(r)$$

Polarizability (screening) !!!! RPA

Co2FeSi, Co2FeGe, Co2FeGa, Co2FeAl Co2MnSi, Co2MnGe, Co2MnGa, Co2MnAl

Electronic structure : minority band gap

Electronic structure : minority band gap

Electronic structure : minority band gap

OUTLINE

- Tc: Comments on Disorder : spin disorder
 spin mixing Curie point calculations
 quaternary alloys strategy
- Eg: Electronic structure: minority band gap
 fundamental gap theory alloys design
- ρ_{up}/ρ_{dn} :Spin Dependent Transport : GMR - Band matching - Q-alloy effects
- K1 : Hexagonal Heusler like alloys :
 Magnetic Anisotropy
- Summary and Conclusions

GMR SVs with Heusler alloys

K. Nikolaev, P. Kolbo, T. Pokhil, X. Peng, Y. Chen, T. Ambrose, and O. Mryasov, Appl. Phys. Lett. 94, (09);

BACKGROUND : spin dependent transport

- if Modify materials set what RA and MR trends to expect
- Challenge is to improve spin dependent scattering :
- β and γ bulk and interface spin asymmetry
- Curie point or spin mixing stability
 - Compare with available experiment

- All charge and potential relaxation takes place in central (C) region. Right (R) and left
 (L) regions assumed to have bulk charge density and potentials.
- Only adjacent layers interact, so the "Hamiltonian" $h \equiv P(E) S^{\alpha}$ of auxiliary Green's function $g(E) = (P(E) S^{\alpha})^{-1}$ has nonzero matrix elements only for adjacent principle layers and takes tridiagonal form in principal layer index:

Model 1: L = Ag; C = CMG|RCS|CMG; R = Ag (110) and (100) Ag|Co2MnGe(3)|Rh2CuSn(3)|Co2MnGe(3)|Ag

Model 2: L = Ag; C = CMG|Ag|CMG; R = Ag (100) Ag|Co2MnGe(3)|Ag|Co2MnGe(3)|Ag

Direct transport simulations : Design 1 vs. Design 2

Direct transport simulations findings:

- better conductance for majority in the case of CMG/Ag spacer that CMR/RCS
- > than 4x higher conductance in the minority channel for 110 texture than in 100

Full transport simulations: Co₂(Mn-Fe)Ge

Co2(Fe-Mn)Ge/Ag/Co2(F-M)Ge (001)

Co2(Fe-Mn)Ge
Preferable gaps
Peferable Tc
Transport result support advantages of
-Co2(Fe-Mn)Ge

Other Heusler alloys for all Heusler CPP-GMR

• within the ballistic transport limit all-Heusler junctions may outperform Ag based junction limited to (100) texture readily support more practical (110)

experimental result in Prof. Hono's talk

OUTLINE

- Tc : Comments on Disorder : spin disorder
 spin mixing Curie point calculations
 quaternary alloys strategy
- Eg: Electronic structure: minority band gap
 fundamental gap theory alloys design
- p_{up}/p_{dn} :Spin Dependent Transport : GMR
 Band matching Q-alloy effects
- K1 : Hexagonal Heusler like alloys :
 Magnetic Anisotropy
- Summary and Conclusions

Materials landscape : 3d-5d vs. 3d-metalloid

K(T) properties : the MnBi challenge

- Reorientation can be understood partially with lattice temperature
 - Still hard to reconcile with large pick

Our approach to the problem : Keff(T)

- W. E. Stutius, T. Chen, and T. R. Sandin, AIP Conference Proceedings 18, 1222 (1974).
- K1(5K, K2(5K) , K3(5K) experimental
- determine k2 and d(2)
- m(T) from experiment

$$K_1 = \frac{3}{2}\kappa_2 + \delta_2 + \Delta_2$$

Analysis indicate huge anisotropy of two-ion type
 d(2) of about + 8 MJ/mc compensated by large negative
 d(0) to give small in-plane K_eff

NiAs vs. Ni₂In vs. TiNiSi : CE technique XYZ (Z=Ge)

• Materials search : structure/phase generators: using generalized cluster expansion algorithms

-A. van de Walle, Nature Materials 7, 455 - 458 (2008)

NiAs vs. Ni2In vs. TiNiSi vs. Ni2U

Ni2U

XYZ, XY=MnFeCo, Z=Ge

- Keff = $+0.45 \text{ MJ/m}^3$
- Ms = 1310 emu/cc
 Tc = 820 K

Decent performance, further enhancement of K might be needed

Summary and Conclusions

- Addressed some of the material physics challenges:

 (I) Tc, spin mixing; (II) Band gap beyond DFT;
 (III) spin dependent transport;
 (IV) MAE
- 3d-3d hybridization nature of minority gap need to be addressed by the way of going beyond DFT
- Exchange coupling MAE affected
- QSGW bands structure calculations enable accurate evaluation of HM features
 - Co2FeGe true HF (GW not LDA) with 0.6 eV gap
 - Co2FeSi X (GW) with 1.33 eV (0.7 eV) LDA gap unlike
- Co2(Fe-Mn)Ge alloy shows favorable spin transport trend
- GMR CMG/CTA(RCS)/CMG(100) and (110) evaluated

Acknowledgements:

Collaboration with experimental groups Prof. Jian Ping Wang : UMN, Fe16N2, other PMA, C-SPIN director

Prof. K. Hono: CTA based all Heusler spacer

2. MINT Center, The University of Alabama

Joseph Barker² now AIMR Tohoku Assistant Prof.

Sergey Faleev² now IBM Almaden, SJ, CA

- ARPA-E ; DARPAearly stage MnBi C-SP N

DARPA-SRC- C-SPIN ;

Strategic Partnership Funding Émergence/Partenariat Stratégique

Alan Kalitsov¹ now WD

BACK UP SLIDES