

Workshop on "Heusler Alloys for Spintronic Devices" July 30, 2015 @C-SPIN, Univ. of Minnesota, Minneapolis, USA

CPP-GMR and Related Phenomena in Half-Metallic Heusler Alloy Systems

Koki Takanashi

Magnetic Materials Laboratory Institute for Materials Research (IMR) Tohoku University Sendai, Japan

Research activities on Heusler alloys in my group

- *CPP-GMR* with Co₂Fe_{1-x}Mn_xSi electrodes
- Spin torque oscillation with CPP-GMR devices
- Giant Peltier effect in CPP-GMR devices
- Perpendicular magnetization of Heusler alloy thin films
- Antiferromagnetic Heusler alloy films to replace IrMn in spin valves

CMS/Cr/CMS fully-epitaxial CPP-GMR device

The first experimental report on Heusler-based CPP-GMR devices with large ΔRA values.

4

Ag spacer? or Cr spacer?

Matching of the Fermi surface is important.

Development of CPP-GMR for Heusler alloys

CPP-GMR with Co₂Fe_xMn_{1-x}Si electrodes

■ The best composition x = 0.4 at $T_a = 500^{\circ}C$ 0.5 at $T_a = 550^{\circ}C$

■ The highest ∆RA of 17.2 mΩ·μm² was observed in Co₂Fe_{0.5}Mn_{0.5}Si.

Half-metallic materials & AMR effect

AMR effects of Heusler alloy films

PRB 86, 020409(R) (2012).

11

CPP-GMR with Co₂Fe_xMn_{1-x}Si electrodes

Discussion - Fe:Mn composition ratio x dependence

Systematic analysis of γ is necessary to clarify the improvement of interfacial exchange stiffness.

Depth-resolved XMCD measurements

Measured@BL-16A, Photon Factory, KEK Collaboration with Prof. Amemiya, Dr. Sakamaki

Soft x-ray \rightarrow penetration depth (~ 5 nm or less) Depth-dependence of magnetic moments can be measured.

¹³

Temperature dependence of Co-moment at the interface; Larger for the Co₂MnSi/Ag case than that for the Co₂FeSi/Ag case

15

Y. Sakuraba, M. Ueda et. al. Appl. Phys. Lett. 101, 252408(2012).

$x = 0 \rightarrow 0.5$: Interface contribution increases \rightarrow MR increases. $x = 0.5 \rightarrow 1$: Half-metallicity disappears \rightarrow MR decreases.

Challenge for a thinner layer thickness

Approach for higher output -new spacer material-

a = b = c = 0.409 nmResistivity = 1.6 µΩcm

 $L1_2 Ag_3 Mg$

a = b = 0.410 nm c = 0.419 nmResistivity ~ 5 µΩcm Fujiwara *et al.*, JPSJ (1958)

Lattice mismatch is similar (Ag ~ 2%, $L1_2$ Ag₃Mg ~ 3%).

Experimental procedures

- ·Film deposition: Magnetron sputtering
- In situ annealing
 @650°C after the Cr depo.
 @500°C after the top CFMS depo.
- Ag-Mg layer
 Deposited by co-sputtering
- Fabrication of CPP-pillar:
 - Electron-beam lithography & Ar ion dry etching
- Characterization: XRD, RHEED, Direct-current 4-probe measurement

19

RHEED patterns of a thin Ag-Mg film

Superlattice diffraction was observed for the surface of $Ag_{83}Mg_{17}$ (~ Ag_5Mg) layer deposited at room temperature

Cross-sectional HAADF-STEM for Ag-Mg spacer

H. Narisawa, T. Kubota, KT, APEX **8**, 063008 (2015).

 $Ag_{83}Mg_{17}$ spacer layer \rightarrow Ordered locally at interfaces

21

RA in CFMS/Ag/CFMS

Temperature dependence of CPP-GMR

Ag spacer → Maximum ~80 K Ag-Mg spacer → Maximum disappears.

Temperature dependence of CPP-GMR

Co₂Fe_xMn_{1-x}Si

Y. Sakuaba, KT, *et al*., Appl. Phys. Lett. **101**, 252408 (2012).

Related to Kondo physics?

L. O'Brien et *al.*, Nature Commun., 5:3927 (2014).

<section-header>

Spin torque oscillator (STO)

Half-metallic Heusler alloy showing large MR

Heusler CPP-GMR STO

Half-metallic Heusler alloys for spintronics

CPP-GMR in Co₂Fe_xMn_{1-x}Si/Ag/Co₂Fe_xMn_{1-x}Si

- Composition dependence: Max. of CPP-GMR @ x=0.4~0.5

- Spacer: Ag \rightarrow Ag-Mg Enhancement of $\triangle RA$

- Temperature dependence of CPP-GMR Maximum for CMS/Ag/CMS, CFMS/Ag/CFMS No Maximum for CFS/Ag/CFS, CFMS/Ag-Mg/CFMS

STO with CPP-GMR devices with CFMS/Ag/CFMS

- nanopillar-type; high output power and high Q

- point contact-type; high output power and high Q with no applied field

33

Magnetic Materials Laboratory

Lab members

Professor	Koki Takanashi	- Mol
Assoc. Prof.	Masaki Mizuguchi	
Assist. Prof.	Takeshi Seki	E
	Takahide Kubota	3
Post-doc.	Zenchao Wen	
	Hitomi Yako	
DC students	Wei-Nan Zhou (China)	
	Jinhyeok Kim (Korea)	
	Takayuki Tashiro, <u>Tatsuya Y</u>	
MC students	lunnei Shimada Mingling 9	

Takayuki Tashiro, <u>Tatsuya Yamamoto, Tomoki Tsuchiya</u> tudents Junpei Shimada, <u>Mingling Sun (China)</u> Yusuke Ina, Satoru Kikushima, Hidenobu Suzuki,

Collaborators on Heusler work

Tomoko Sugiyama (IMR, Tohoku Univ.) Yuya Sakuraba, Subrojati Bosu (NIMS, Tsukuba) Masafumi Shirai (RIEC, Tohoku Univ.), Yoshio Miura (Kyoto Institute of Technology)