Hybrid CMOS + Spintronics for the Next Big Leap in Energy Efficient Computing

Vivek De
Intel Fellow & Director of Circuit Technology Research
Intel Labs

Workshop on the Future of Spintronics
June 5, 2016

The Internet of Everything (IoE)

Feedback & Control

Paradigm shifts across architecture, circuits, design & technology

Universal-Scalable-Efficient Cognitive Computing

Exploit Moore's Law integration, spike timing, sparsity & resiliency

Voltage Scaling & Variation Tolerance

Variation-tolerant NTV design essential for energy efficiency

Die 3

Core ID

0.95

Critical Path Delay

1.05

Fine-Grain Power Management

Autonomous & distributed fine-grain power management is essential

Off-die inductors All circuits on die

Distributed Memory + Compute

Embedded SRAM Array

Conventional Neurons Bus Synapses

Scheduler -

Router.

3D Integration: SRAM

Transposable SRAM Cell

Neuron

1.2 million transistors

3D Integration: DRAM

Merolla et al., 2014 Science

Integrated high-density & energy-efficient memory is critical

Emerging Technologies: Memory

Embedded STT-RAM

Yuasa et al., 2013 IEDM

STTRAM vs. SRAM	
Leakage Power	17X lower
Cell Area	2.8X lower
Read Energy	5.6X lower
Write Energy	2X lower

Cruz-Albrecht et al., 2013 Nanotechnology

Integrated dense & non-volatile memory for synaptic weight storage

Emerging Technologies: Neurosynapse

Verhulst et al., 2014 IEDM

Spintronics

Neel wall based synapse

Spin-orbit torque domain wall motion

Nano-oscillators

Spin Torque Oscillator (STO)

Pattern matching

D. Nikonov et al., 2015 JXCDC

TFET, spintronics & nano-oscillators for beyond-CMOS neurosynapse

Beyond CMOS Technology Outlook

Moore's Law: Economics AND Power

Heat problem

"Will it be possible to remove the heat generated by tens of thousands of components in a single silicon chip?"

"Cramming more components onto integrated circuits", Electronics, Volume 38, Number 8, April 19, 1965

Big leaps in energy efficiency trigger technology transitions!

Summary

