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• Contenders: spintronic logic

• Requirements for spin-based logic

• A new device concept

Outline
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Background: ASL and HEAL
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• Input magnet injects spin into 
channel

• Channel transfers spin to 
output end

• Output magnet receives spin 
and stores state

• Heusler-based ASL (HEAL)
– Heusler alloys: high spin 

polarization (0.7~1.0), high 
perpendicular magnetic 
anisotropy (Hk>10000 Oe), 
high spin injection efficiency, 
no tunnel barrier

• Other variations based on 
Spin-Hall effect
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Background: Magnetoelectric (ME) devices
• ME-based device

– ME effect used to switch 
input

– Signal propagation and 
majority evaluation using 
domain wall automotion

– Inverse ME effect used to 
switch output

• MESO
– Charge-mediated device

– Charge used to switch 
input magnet using the 
ME effect

– Spin-orbit coupling (Spin-
Hall effect, inverse 
Rashba-Edelstein effect) 
creates output charge 
current

[Manipatruni et al., ArXiv]
[Chang et al., JxCDC16]
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• High speed
~100ps switching time

• Low energy
~100aJ energy

Goals for spin-based logic devices
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ME + current-driven domain walls
• Domain wall speed bottleneck

– ME-based device using 
automotion proposed in [1]

– Experimentally, automotion
~70m/s [2]

– Expend energy, fast propagation
• Design-space exploration of material 

parameters
– Existing/exploratory material
– We propose CoMET: 

Composite-input Magneto-
Electric Technology with domain 
wall propagation using spin orbit 
torque

[1] S-. C. Chang et al., IEEE JxCDC, 2016 [2] J. Chauleau et al., PRB, 2010.

Goal: ~100ps delay, < 100aJ energy

[Mankalale et al., DRC 2016]
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ME Logic with Current–driven DW 
Motion



Workshop on the Future of Spintronics (June 5, 2016)

Device Dimensions
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Dimension (l  x  w x h)
FE 1F x 1F x 1 nm
FM/HRM 5F x 1F x 1 nm 
Oxide 3F x 1F x 1 nm

MAJ3 LAYOUT

Technology nodes considered: 1F = 5nm, 7nm,10nm 
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Domain Wall Nucleation 
Vsupply

Effective magnetic
field from ME 
coupling, HME

t = 0

t = 25ps

t = 50ps

Zeeman field

Obtain tnucleate

DW nucleation in FM
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Current-driven Domain Wall 
Propagation
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Ø Impact of scaled geometries considered for calculation of V, velocity of 
DW and Φ, phase of the DW.

Ø Current density, J = 9 x 1010 A/m2 (below electromigration limit).
Ø Walker breakdown field also accounted for.
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Design Space Exploration
• Design space large – Focus only on FM material parameters
• Range of parameters chosen to cover both existing and exploratory 

materials 

Balance  tnucleate vs. tpropagate

Saturation Magnetization, 
Ms (emu/cc)

tpropagate increases 

tnucleate increases 
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Design Space Exploration - DW 
Propagation
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Design Space Exploration - DW 
Propagation
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Results
Set

Parameters

Set 1 Set 2 Set 3

Exchange constant , A
(pJ/m)

10 2.8 6.8

Saturation Magnetization, Ms
(emu/cc)

500 300 300

Supply voltage, Vsupply (V) 0.93 1.50 2.12
Spin Polarization 0.5
Spin Hall Angle 0.5
Uniaxial anisotropy, Ku (J/m3) 106

Damping constant, α 0.05

Technology 
node (1F)

Set 1
(ps)

Set 2
(ps)

Set 3
(ps)

5nm 128 125 117
7nm 156 149 124
10nm 198 184 155

Technology 
node (1F)

Set 1 
(aJ)

Set 2 
(aJ)

Set 3
(aJ)

5nm 67.4 130.6 212.0
7nm 108.6 209.0 417.6

10nm 173.4 375.6 701.0

tdelay

Energy

Delay

Energy

Energy-delay tradeoff 
between parameter sets. 

DW Velocity
(m/s)

362 420 540
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Mapping to Materials
Set

Parameters

Set 1 Set 2 Set 3

Exchange constant , A (pJ/m) 10 2.8 6.8

Saturation Magnetization, Ms
(emu/cc)

500 300 300

Spin Polarization 0.5

Uniaxial anisotropy, Ku ( J/m3) 106

Damping constant, α 0.05

Mn-Ga based 
Heusler alloy

FM   

HRM β-Ta, Pt, β-W

FE Capacitor BFO
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Sneak Peek of CoMET
(currently being validated)

• Based on the use of a
composite input structure
– Similar speeds
– Much lower Vdd

• 0.93 – 2.12V à < 0.3V
• Energy ~60aJ

Technology 
node (1F)

Set 1
(ps)

Set 2
(ps)

Set 3
(ps)

5nm 137 123 105
7nm 175 156 131
10nm 233 206 170

Technology 
node (1F)

Set 1 
(aJ)

Set 2 
(aJ)

Set 3
(aJ)

5nm 106.2 56.4 83.2
7nm 110.6 52.6 62.4

10nm 78.6 57.0 57.0

tdelay

EnergySupply voltage (V) Set 1 Set 2 Set 3

5nm 0.75 0.27 0.58
7nm 0.58 0.14 0.27

10nm 0.27 0.14 0.14

DW Velocity
(m/s)

362 420 540
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• New device for logic applications: ~100ps, ~100aJ per 
device

• Currently being extended to build larger circuits
• Possible applications

– Logic circuits
– In-/Near-memory processing structures
– IoT elements

• Acknowledgments
– Angeline Smith, Mahendra DC, Mahdi Jamali

Summary


