MTJ based Random Number Generation and Analog-to-Digital Conversion

Chris H. Kim University of Minnesota

Workshop on the Future of Spintronics, June 5, 2016

Switching Probability of an MTJ

H. Zhao, JP Wang, JAP, 2011

- P_{sw}=100% (write) or 0% (read) : STT-MRAM
- P_{sw}=50% switching: Random number generation
- 0%<P_{sw}<100%: Analog to digital conversion, time to digital conversion

MTJ based TRNG - Unconditional Reset Scheme -

- 50% switching utilized for generating random bits
- Large reset voltage required every cycle → slow, high power, short lifetime

New Conditional Perturb Scheme

 Perturbs MTJ according to the previously sampled MTJ state, thereby eliminating the reset phase → fast, low power, long lifetime

MTJ Measurement Setup

 Random number generator measurement setup with sub-50 ps pulse width resolution

W. Choi, Y. Lv, JP Wang, C. Kim, IEDM 2014

NIST Randomness Test Results

Unconditional reset scheme				Conditional perturb scheme					
# of segments: 55				# of segments: 55					
	Test	Pass/Fail			Test	Pass/Fail			
1	Frequency	Fail		1	Frequency	Fail			
2	Block frequency	Pass		2	Block frequency	Pass			
3	Cumulative Sums	Fail		3	Cumulative Sums	Fail			
4	Runs	Pass		4	Runs	Pass			
5	Longest-Run-of-Ones	Pass		5	Longest-Run-of-Ones	Pass			
6	Rank	Pass		6	Rank	Pass			
7	FFT	Pass		7	FFT	Pass			
8	Non-overlapping Template Matching	Pass		8	Non-overlapping Template Matching	Pass			
9	Serial	Pass		9	Serial	Pass			
10	Approximate Entropy	Pass		10	Approximate Entropy	Pass			

Both schemes show similar level of randomness

 The output data fail to pass the frequency and cumulative sums tests

Real-Time Output Probability Tracking

Simple single-parameter feedback control

 The proposed techniques were implemented in a real-time feedback loop

W. Choi, Y. Lv, JP Wang, C. Kim, IEDM 2014

Measured Probability and Randomness - Real-Time Output Probability Tracking-

Proposed conditional perturb and real-time probability tracking provides good randomness while improving reliability, speed, and power

Pass/Fail

Pass

MTJ based ADC

- A short 5ns t_{PERTURB} used for suppressing thermal activation switching
- Averaging more bits gives a smoother and more accurate probability curve (128 bits vs. 2,048 bits)
- Temperature sensitivity is acceptably low

Measured Worst Case DNL and INL

- A 5-bit ADC resolution is assumed (i.e. 1LSB = 4mV)
- DNL of 1 LSB can be achieved by averaging more random bits (e.g. 2,048 bits)
- INL cannot be improved by simply averaging more bits

One-time Digital Calibration for Improving INL

J. Kim, et al., TCAS-I, 2010, J. Daniels, et al., VLSI Circuits Symposium, 2010.

 Basic idea: Pre-calibrate MTJ transfer curve and store the inverse function in a look-up table to compensate for inherent non-linearity

Measured DNL and INL @ 85°C

- Target DNL / INL of 1 LSB can be met after one-time calibration
- ADC resolution limited to 5-bit due to narrow input voltage range

Proposed Input Range Enhancement Technique

Implementation of Input Range Enhancement Technique

Input range enhancement technique

• A voltage divider and an analog buffer control the MTJ bottom node voltage

Measured DNL and INL @ 85℃

- Target DNL / INL of 1 LSB can be met after calibration
- 8-bit ADC resolution with good linearity is achieved

ADC Performance Summary

2,048 bits / sample

		30 °C			85 ⁰C		
	Input range	DNL _{MAX} (LSB)	INL _{MAX} (LSB)	Bits	DNL _{MAX} (LSB)	INL _{MAX} (LSB)	Bits
Original MTJ-based ADC	128mV (X1)	0.74	1.32	5	0.75	1.53	5
+ Digital calibration	128mV (X1)	1.00	0.76	5	1.00	0.72	5
+ Digital calibration + Input range enhancement	1024mV (X8)	1.00	0.84	8	1.00	0.88	8

- ADC resolution (=8 bit) was limited by the minimum voltage step (=1mV) of pulse generator
- Ideally, resolution could be as high as 14 bits

W. Choi, Y. Lv, JP Wang, C. Kim, VLSI Tech. Symposium, 2015 Slide 16

Summary

- MTJ-based TRNG
 - First demonstration of TRNG based on the random switching probability of MTJ
 - Conditional perturb and real-time output probability tracking → improved lifetime, speed, and power
- MTJ-based ADC
 - Digital calibration for improved linearity and input range enhancement technique
 - 2,048 bits averaged to generate one ADC sample
 - Insensitive to temperature using a 5ns pulse width