Center for Spintronic Materials,
Interfaces, and Novel Architectures

Voltage Controlled Antiferromagnetics
and Future Spin Memory

Maxim Tsol
The University of Texas at Austin

Acknowledgments:
H. Seinige, M. Williamson, S. Shen, C. Wang
J.-S. Zhou, J. B. Goodenough, University of Texas at Austin
Gang Cao, University of Kentucky

C SP ‘% N NSF, KAUST
- L Memory Focus Session, September 20, 2016 1 STARnet




C-SP4N

Outline

Introduction to Spintronics:
why antiferromagnets (AFMs)?

Results & progress:
new AFM materials and phenomena

Challenges: ultra-high frequencies

Long term objectives: AFM devices
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Spintronics

built on a complementary set of phenomena
in which
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AFM Spintronics

Unique advantages of AFM materials

Magnetoresistive Transport
Phenomena Phenomena
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* Insensitive to H-perturbations = more robust/stable
« stray-field-free - no cross-talk between devices
« ultra-high frequencies -> ultra-fast writing schemes

 Explore AFM potential for spintronic devices L
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AFM Spintronics

Challenges being addressed
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« exploring new AFM materials

« demonstrating new transport phenomena
« developing new concepts

 Explore AFM potential for spintronic devices L
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AFM Materials

Comparative study of AFM iridates
* Sr;lr,0,

Single vs double layer of distorted octahedra

Sr,IrO, = ab-plane canted AFM structure (T-=240 K)
Sr;Ir,O, = c-axis collinear AFM structure (T-=285 K)
Semiconductor with a band gap of ~30-200 meV
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Sr,lrO,

OBSERVED: a complete set of interconnections
between magnetic state and transport currents
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* We demonstrated the feasibility of
reversible resistive switching driven by
high electric bias fields

 We found a very large anisotropic
magnetoresistance (AMR) which can

be used to monitor (read) the magnetic
state of AFM

 the promise of AFM spintronics is very appealing

Wang et al., Phys. Rev. X 3, 041034 (2014); Wang et al., Phys. Rev. B 92, 115136 (2015) V
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Bias-dependent activation energy

T-dependent resistivity measurements
¢ Sr,lro, * Sr;lr,0,

« Activation energy can be directly probed with standard
temperature-dependent resistivity measurements

« Arrhenius plots (InR vs T-1) at different biases show the bias-
dependent band-gap

« Electrically tunable band-gap
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Field effect model) Blas-dependent resistance
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Bias-dependent resistance

|\ characteristics

Field effect model:

A
R(I) = A * eZksT

A(I) = Ao — B * |1

« Temperature dependent R(I) curves can be well fitted by field effect model

' Izl | « High electric fields can
"9 displace oxygen ions
along the c-axis

« Electrically tunable band-gap Y
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Electronic band gap

« conventional semiconductors (Si) - fixed by crystal structure and chemical
composition

« defines transport and optical properties - of great importance for performance
of semiconductor devices (diodes, transistors, lasers)

 Tunable band gap

- enhanced functionality and flexibility of
future electronic and optical devices

* Previously realized - in a 2D material — electrically gated bilayer
graphene Oostinga et al. Nature Materials 7, 151 (2007)

* Our study - in a 3D antiferromagnetic iridates

- band gap engineering in 5d transition-metal oxides

s
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Reversible resistive switching
driven by high currents/electric fields
¢ Sr,lro, * Sr,lr,O
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Above a critical current both samples show reversible resistive switching

Switching may be associated with field induced structural transition between
two metastable states in the crystal structure

« Switching is magnetic field dependent in Sr,IrO,

« Electrically driven resistive switching
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High-frequency measurements
Suppression of switching and resonance-like structure in Sr;lIr,O,

3 GHz
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« Microwaves suppress switching
* Microwaves produce resonance-like structure

« Antiferromagnetic resonance?

¥
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High-frequency measurements
Antiferromagnetic resonance”?
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* Frequency and magnetic field have no effect on shape or
position of resonance-like structure
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High-frequency measurements
Frequency dependence of switching in Sr,lr,0O;
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« Resonant structure only appears above a critical power level
« Critical power depends on the frequency of applied microwaves

 Evanescent waves?
« Dissipationless magnonics?
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Theory: Dissipationless Multiferroic Magnonics

week ending

PRL 114, 157203 (2015) PHYSICAL REVIEW LETTERS 17 APRIL 2015

Dissipationless Multiferroic Magnonics (a)
Wei Chen"? and Manfred Sigrist’ s
cmi NM B

‘Max-Planck-Institut fiir Festkorperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
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Theoretische Physik, ETH-Ziirich, CH-8093 Ziirich, Switzerland
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Dissipationless magnonics can be excited by
an ac electric field in coplanar multiferroric
insulators with AFM spiral order

« Displacement of oxygen ions due to the dc bias can lead to electric
polarization and lattice deformations, which may change magnetic
structure to AFM spiral-like order via spin-orbit coupling

—> ac bias can excite electrically controlled magnonics

« dc voltage originates from rectification of ac current and time-
dependent resistance due to small lattice distortions

s

C-SP4N Memory Focus Session, September 20, 2016 18 STARnet



Voltage Controlled Antiferromagnetics
and Future Spin Memory

 Results & progress:
- new AFM phenomena: confirmed in Sr,IrO, and
Sr;lr, 0,
= intriguing high-frequency effects: 1ststep
towards fast AFMs?

* Challenges:

-> high-temperature materials: Copper oxides
have demonstrated Cu Néel temperatures 300-500 K

- ultra-high frequencies: THz detection

TRANSPORT

PROPERTIES

 Long term objectives:
> AFM devices: from AFM-MTJ to AFM-RAM
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