Center for Spintronic Materials, Interfaces, and Novel Architectures

Voltage Controlled Antiferromagnetics and Future Spin Memory

Maxim Tsoi The University of Texas at Austin

Acknowledgments:

H. Seinige, M. Williamson, S. Shen, C. Wang J.-S. Zhou, J. B. Goodenough, University of Texas at Austin Gang Cao, University of Kentucky NSF, KAUST C-SP∲N

STARnet

Outline

- Introduction to Spintronics: why antiferromagnets (AFMs)?
- Results & progress:
 new AFM materials and phenomena
- Challenges: ultra-high frequencies
- Long term objectives: AFM devices

Spintronics

built on a complementary set of phenomena in which

Spintronics

C-SP∳N

Spintronics

AFM Spintronics

Unique advantages of AFM materials

- insensitive to H-perturbations → more robust/stable
- **stray-field-free** \rightarrow *no cross-talk between devices*

C-SP∳N

- ultra-high frequencies → ultra-fast writing schemes
 - Explore AFM potential for spintronic devices

STARnet

AFM Spintronics

Challenges being addressed

- exploring new AFM materials
- demonstrating new transport phenomena
- developing new concepts

C-SP∳N

• Explore AFM potential for spintronic devices

7

AFM Materials

Comparative study of AFM iridates

• Sr_2IrO_4

C-SP⁴N

• $Sr_3Ir_2O_7$

- Single vs double layer of distorted octahedra
- $Sr_2IrO_4 \rightarrow ab$ -plane canted AFM structure (T_c =240 K)
- $Sr_3Ir_2O_7 \rightarrow c$ -axis collinear AFM structure (T_c =285 K)
- Semiconductor with a band gap of ~30-200 meV

Sr₂IrO₄

OBSERVED: a complete set of interconnections between magnetic state and transport currents

 We demonstrated the feasibility of reversible resistive switching driven by high electric bias fields

• the promise of AFM spintronics is very appealing

Wang et al., Phys. Rev. X 3, 041034 (2014); Wang et al., Phys. Rev. B 92, 115136 (2015) Memory Focus Session, September 20, 2016 9

Bias-dependent activation energy

T-dependent resistivity measurements

- Activation energy can be directly probed with standard temperature-dependent resistivity measurements
- Arrhenius plots (InR vs T⁻¹) at different biases show the biasdependent band-gap

Electrically tunable band-gap

C-SP∳N

Memory Focus Session, September 20, 2016

10

200

(meV

(meV)

Memory Focus Session, September 20, 2016

11

STARnet

Bias-dependent resistance

IV characteristics

• Temperature dependent R(I) curves can be well fitted by field effect model

 High electric fields can displace oxygen ions along the c-axis

12

Electrically tunable band-gap

Electronic band gap

- conventional semiconductors (Si) → fixed by crystal structure and chemical composition
- *defines transport and optical properties* → of great importance for performance of semiconductor devices (diodes, transistors, lasers)

Tunable band gap

→ enhanced functionality and flexibility of future electronic and optical devices

- <u>Previously realized</u> → in a 2D material electrically gated bilayer graphene Oostinga et al. Nature Materials 7, 151 (2007)
- <u>Our study</u> \rightarrow in a 3D antiferromagnetic iridates

→ band gap engineering in 5d transition-metal oxides

Reversible resistive switching

driven by high currents/electric fields

- Above a critical current both samples show reversible resistive switching
- Switching may be associated with field induced structural transition between two metastable states in the crystal structure
- Switching is magnetic field dependent in Sr₂IrO₄

Electrically driven resistive switching

C-SP∳N

Memory Focus Session, September 20, 2016

High-frequency measurements

Suppression of switching and resonance-like structure in Sr₃Ir₂O₇

- Microwaves suppress switching
- Microwaves produce resonance-like structure

Antiferromagnetic resonance?

C-SP♠N

Memory Focus Session, September 20, 2016

High-frequency measurements

Antiferromagnetic resonance?

$$\omega_{res}/\gamma = H_0 \pm \sqrt{2H_A}H_E$$

• Frequency and magnetic field have no effect on shape or position of resonance-like structure

High-frequency measurements

Frequency dependence of switching in Sr₃Ir₂O₇

- Resonant structure only appears above a critical power level
- Critical power depends on the frequency of applied microwaves
 - Evanescent waves?
 - Dissipationless magnonics?

C-SP∳N

Theory: Dissipationless Multiferroic Magnonics

 Displacement of oxygen ions due to the dc bias can lead to electric polarization and lattice deformations, which may change magnetic structure to AFM spiral-like order via spin-orbit coupling

\rightarrow ac bias can excite electrically controlled magnonics

 dc voltage originates from rectification of ac current and timedependent resistance due to small lattice distortions

Voltage Controlled Antiferromagnetics and Future Spin Memory

Results & progress:

RANSPOR

- → new AFM phenomena: confirmed in Sr_2IrO_4 and $Sr_3Ir_2O_7$
- → intriguing high-frequency effects: 1st step towards fast AFMs?
 - Challenges:
 - → high-temperature materials: Copper oxides have demonstrated Cu Néel temperatures 300–500 K
 → ultra-bigh frequencies: Tura detection
 - → ultra-high frequencies: THz detection
 - Long term objectives:
 → AFM devices: from AFM-MTJ to AFM-RAM

MAGNETI