Center for Spintronic Materials, Interfaces, and Novel Architectures

Exploiting Non-Volatilityin Spin-Based Information Processing

X. Sharon Hu, University of Notre Dame

Students: Robert Perricone, Ibrahim Ahmed Collaborators: Michael Niemier, Chris Kim, Anand Ragunathan, Sachin Sapatnekar Jian-Ping Wang

Theme 5 Cross Theme 4

This work is sponsored in part by C-SPIN, a funded center of STARnet, a Semiconductor Research Corporation (SRC) program sponsored by MARCO and DARPA.

From Applications to Devices

Exploiting Unique Properties of Spintronic Devices

C-SPIN, Annual Review, September 20, 2016

From Applications to Devices: Example

Circuit and Architecture Example

Exploiting Unique Properties of Spintronic Devices

Systems Powered by Harvest Energy

➤ Many edge computing systems are powered by harvested energy

- ➤ Unstable power supply
 - Off time varies from cycle-to-cycle
 - Length outage depends on source

Frequent backup/ recovery

- Energy inefficiency
- Slow progress
- NV components allows faster progress toward end result

Fig. 4. VP vs. NVP processing progress comparison

Non-volatility of spintronic devices can be ideal alternatives

Power profile figure from: Ma, K., et al. "Architecture exploration for ambient energy harvesting nonvolatile processors." *IEEE Int'l Symposium on High Performance Computer Architecture (HPCA)*. IEEE, 2015.

Non-Volatile Processors (1)

➤ Two basic designs

≻EB-NVP

- NV memory for retaining data during power outage
- C-SPIN memory devices (SHE-RAM, AFM-RAM, ME-RAM)
- Write time/energy, read time/energy, retention time

≻IB-NVP

- NV logic devices themselves for retaining data during power outage
- C-SPIN computing devices (ASL, MESO, SWD, etc.)
- Processing energy, delay, retention time

Non-Volatile Processors (2)

Energy may be less competitive for general purpose computing

NV processor with hybrid backup

NV Memory

Spin devices (s.t. ASL, MEL) are good candidates

+

- Shorter retention time for NV processor to save energy
- NV memory recovery only needed when outage is long
- Use design space exploration to optimize

Figures taken from: Kim, J, et al. "Spin-based computing: device concepts, current status, and a case study on a high-performance microprocessor." *Proceedings of IEEE,* 2015..

Framework for Benchmarking Non-Volatile Processors

Power supply profile modeling

- Total # of backups/Recovery
- Distribution of Power Outage

Processor architecture modeling

- # of PE types
- # of PEs/PE type
- Interconnects

Backup strategy modeling

- Energy/Delay per NV memory read and write
- # of Writes/Reads per backup/recovery operation

NV processor modeling

 Total processor energy/delay

Case Study: 32-Bit MIPS Processor

>32-bit non-pipelined MIPS processor [1]

microprocessor." Proceedings of IEEE, 2015.

C-SP

N

C-SPIN, Annual Review, September 20, 2016

Case Study: ASL as Drop-In Replacement

➤ CMOS processor data derived from [1]

- Original data in [1] based on 45nm technology
- Used BCB model to scale down the processor to 15nm technology
- Both transistors and STT-RAM are scaled

>ASL processor data derived from [2]

- Number of ASL devices (for RF, PC, ALU, Control, etc.): 3500 (50% of total number of transistors)
- IC Buffers: 0 (based on probability distribution function in [2])
- Different diffusion lengths and materials are considered
- $E_{total} = N_L(E_L) + N_{IC}(E_{IC})$
 - N_I and N_{IC} are # of logic and IC buffers, resp.
 - E_L and E_{IC} are the switching energy per device

[1] Ma, K., et al. "Architecture exploration for ambient energy harvesting nonvolatile processors." *IEEE Int'l Symposium on High Performance Computer Architecture (HPCA)*. IEEE, 2015.

[2] Kim, J, et al. "Spin-based computing: device concepts, current status, and a case study on a high-performance microprocessor." *Proceedings of IEEE*, 2015.

Comparing ASL with CMOS NVP

NV in Energy Proportional Computing

- ➤ Idle power in heterogeneous multi-core systems
 - Can be quite significant
 - Application dependent
- ➤ Aim to achieve energy proportional computing
- ➤ Our preliminary results show an Intel i5 processor running BFS only spends about 30% of time, 50% energy in the active mode

M. Aroraet al., "Understanding idle behavior and power gating mechanisms in the context of modern benchmarks on CPU-GPU Integrated systems," HPCA, 2015, pp. 366-377.

NV in Near/In-Memory Processing

- ➤ Data analytics applications
 - Large amount of data
 - Simple operations
- ➤Place operations close to data
 - Increase effective memory BW
 - Reduce energy consumption

Micron's Automata Processor (Harold Noyes, 2014)

Row Address

BLB0 BL1 BLL **Computational RAM**

(Minnesota)

Exploiting Unique Properties of Spintronic Devices

