

......

CISCO

Electromigration-Induced Bit-Error-Rate Degradation of Interconnect Signal Paths Characterized from a 16nm Test Chip

<u>Nakul Pande</u>¹, C. Zhou², M. H. Lin³, R. Fung⁴, R. Wong⁴, S. Wen⁴, and C. H. Kim¹

¹University of Minnesota, ²currently with Maxim Integrated, ³TSMC, ⁴Cisco Systems

- Introduction
- Proposed BER-based EM Degradation Monitor
- Automated Testing Methodology
- Measured Results from the 16nm Test-Chip
- Conclusion

- EM is a function of current density, temperature and mechanical stresses
- Impact: Increased delay in signaling interconnects, IR drop in power grids

Prior Art: Resistance-based EM Tracking Approaches

- Large test area due to IO pads
- Long test time due to serial testing
- Extensive oven-based setup (300°C – 400°C)

- Small test area using array
- Short test time with parallel stress
- Simpler setup using on-chip heaters

N. Pande et. al., IEDM, 2019

Proposed Concept: BER-based EM Degradation Tracking

- Capture EM 'R' shifts directly in terms of degradation in the T-0 BER
- Relevant metric for quantifying the signaling capability of a datapath
- Digital-Intensive on-chip approach, featuring high precision bit-wise tracking

Introduction

- Proposed BER-based EM Degradation Monitor
- Automated Testing Methodology
- Measured Results from the 16nm Test-Chip
- Conclusion

Measurement Top

- VCO: 7-stage, cross-coupled, supply tuned ROSC
- Pattern Generator: 32-bit circular-shift register with scan-based parallel load capability
- 10-bit asynchronous counters to accumulate bit '0' & bit '1' errors separately

Unit Tile-able Cell

- Local sampling monitors separately track Data '0' & Data '1' bit-errors
- Errors from a selected group are routed to the measurement top

- DUTs folded & mirrored to maximize area utilization
- Routed with wide feeders to minimize IR drop

Implementation Summary

Process	16nm FinFET
Core, I/O VDD	0.8V, 1.8V
Chip Area	926µm x 926µm
Design Area	172µm x 435um
DUT Types	M4-M3, M2-M3
Wire Lengths	50, 100, 200µm
Wire Widths	Minimum
Datapaths / Chip	96 (x5 = 480 total wires)

• Chip Feature Summary

Implemented EM test-structures

- Introduction
- Proposed BER-based EM Degradation Monitor
- Automated Testing Methodology
- Measured Results from the 16nm Test-Chip
- Conclusion

Measurement Methodology

Measurement Flow

Measured BER Vs. Window size

2021 Symposia on VLSI Technology and Circuits

Slide 12

Test Setup

2021 Symposia on VLSI Technology and Circuits

T5-5

- Introduction
- Proposed BER-based EM Degradation Monitor
- Automated Testing Methodology
- Measured Results from the 16nm Test-Chip
- Conclusion

Heater TCR Characterization & Extrapolation

• TCR linearity allows accurate translation to target stress temperature: 360°C, for this work

T-0 BER Characterization Of Fresh Datapaths

• BER saturates at lower frequencies for interconnect paths with longer lengths

Stress Experiment: Measured I_{STRESS} Degradation

1-1.5% shifts are monitored per stress cycle (expect the final two)

Stress Experiment: Measured Results

 Test-chip data captures both progressive & abrupt resistance-shift signatures in terms of the measured BER

BER Characterized from four independent datapaths

2021 Symposia on VLSI Technology and Circuits

T5-5

Conclusions

- The BER of an interconnect-path is proposed as a new metric for capturing EM-induced resistance-shift signatures
- A fully-digital hardware monitor featuring on-chip heaters, stress drivers & local sampling circuits for separately tracking Data '0' & Data '1' errors was implemented in a 16nm FinFET process
- Abrupt & progressive resistance-shift signatures were distinctly captured in terms of the measured BER