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Abstract— A mixed-signal, time-based 65-nm application-
specific integrated circuit is developed for solving shortest-path
problems. Digital circuits are collocated with the memory as
intra-memory computing. The core follows similar principles
from wave routing and, additionally, incorporates a gradient
on the periphery of the core to implement the A∗ algorithm
predicted distance heuristic. A leading pulse is propagated from
start nodes and is asynchronously latched in neighboring vertex
cells and pushed to its four neighbors. Applications include
collision avoidance for self-driving cars, shortest path planning,
and scientific computing, and are shown to be scalable across
many cores. The chip achieves 559 million traversed edges
per second at 105× improved energy efficiency compared with
existing platforms such as field-programmable gate array and
CPU. The processor operates nominally at 1.79 ns per node with
peak power consumption of 26.4 mW.

Index Terms— A∗ algorithm, graph computing, graphs,
intra-memory computing, single-source shortest path (SSSP),
time-domain computing, time-to-digital converter.

I. INTRODUCTION

S INGLE-SOURCE shortest path (SSSP) problems have
a rich history of algorithm development [1]–[3]. SSSP

has many applications including AI decision making, robot
navigation, VLSI signal routing, autonomous vehicles, and
many other classes of problems that can be mapped onto
graphs. Recently, accelerators have been included in system-
on-a-chips specifically targeted at autonomous vehicles [4].
These approaches rely on conventional algorithms which
sequentially traverse the search space. Performance is inher-
ently limited by von Neumann systems in traditional computer
architecture. As graphs become very large, this slow process-
ing time can become a bottleneck in real-world applications.
In this article, a time-based application-specified integrated
circuit (ASIC) is presented to address this issue. The design
leverages a dedicated hardware implementation to solve these
problems in linear time complexity and at unparalleled energy
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Fig. 1. Examples of an integer weighted undirected graph (left) and an
unweighted directed graph (right).

efficiencies. Intra-memory computing describes an architecture
where the digital logic is collocated within the memory array.
This helps reduce data movement to overcome the memory
bottleneck. A 40 × 40 four-neighbor grid implements a wave-
front (WF) expansion with a first-in lockout mechanism to
enable traceback. Outside the array, a programmable resistive
ladder provides bias voltages to the delay cells which enables
pulse shaping reminiscent of the A∗ algorithm [1]. Section II
begins with a primer on graph fundamentals and a survey of
the prior art. Section III describes the operating principle of
the ASIC and details the core circuits that enable the unique
functionality. Next, Section IV will describe quantitative mea-
surement results and a thorough process, voltage, temperature
(PVT) analysis. Applications will be presented in Section V
and conclusions will be drawn in Section VI. The conference
version of this article was published in [5]. Contributions of
this extended version include prior art discussion, expanded
description of chip functionality, and additional measurement
results focused on variation analysis.

II. GRAPH FUNDAMENTALS

A graph is a computation construction consisting of as a set
of vertices and connections, or edges between them. Following
edges is how graphs are traversed. One-way connections are
called directed. They can also be bidirectional or undirected.
Edges can have weights to bias certain paths. In Fig. 1, the left
graph has weighted undirected connections. The right graph
has directed edges, which can be seen by the arrows on ends of
the edges. Graphs are not intrinsically interesting, but when
they can be mapped onto real-world problems, well known
mathematical techniques can be applied to solve a variety of
problems.

A popular workhorse for SSSP is Dijkstra’s algorithm [2].
Dijkstra’s algorithm is classified as a greedy algorithm because
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Fig. 2. Illustration of the intuition of the A∗ heuristic. S and T correspond
to source and target, respectively.

Fig. 3. Manhattan distance as the heuristic in A∗ SSSP. Blue numbers indicate
the distance from the target, T . Gray numbers refer to the grid.

it always chooses the best available option. Nodes are added
to the priority queue based on the distance to the source node.
Shorter distances signify a greater likelihood to find a quicker
path to the target and are serviced first. Dijkstra’s algorithm
is guaranteed to find the shortest route because at each node,
the shortest path to it is recorded as the algorithm progresses.

One optimization for search is taking into account a priori
information, such as searching nodes in the direction of the
target first. This intuition is illustrated in Fig. 2. Cells in
the direction of the arrows pointing toward T clearly should
be searched before those cells in the direction of the arrows
pointing away from T. This is precisely the modification that
the A∗ algorithm [1] makes to Dijkstra’s algorithm

Cost(n) = F(n) + H (n). (1)

The cost assigned to a node, n, in the priority queue is
shown in (Cost(n) = F(n) + H (n)) (1). F(n) is the actual
distance of the current node from the source; the cost assigned
in Dijkstra’s algorithm. H (n) is a heuristic that predicts the
distance of the current node to the target. A familiar distance
heuristic is the Euclidean distance or straight-line path.

Fig. 3 details the Manhattan distance heuristic, commonly
used in graph computing, named after the uniform grid streets
in Manhattan, New York City. Outside the grid, the coordinates
in both directions are listed. The predicted cost of the distance
at any given point to the target is the sum of the differences
of their horizontal and vertical coordinates. The relationship

between these algorithms, the processor test chip, and the
applications will be seen in Section III. First, we will discuss
current state of the art work.

A. Prior Art

Due to the prominence of graphs in computing, there is an
incredible breadth of work in the literature. The key focus
of many of these works is to reduce the memory bottleneck
common in graph applications. One-way Graphicionado [6]
overcomes this limitation is by only accessing four bytes
for each vertex compared with the convention 64 bytes,
which reduces scratchpad storage. The authors use a special
processing pipeline that is reconfigurable for workload-specific
functions to extract parallelism from large-scale graph prob-
lems. The pipeline functions can be broken down into two
phases; processing and apply. In the processing phase, every
edge is operated based on software defined functions. Updates
are stored in a temporary vertex property array. The update
phase is initiated when all active vertices have been serviced.
The update phase writes these temporary properties along with
the existing properties of the vertex. Graphicionado custom
modules are implemented for these two phases. The pipeline
consists of nine processing stages and the apply pipeline
is five stages deep. The pipeline uses prefetching in order
to have all off-chip memory accesses sequential, meaning
they do not have dependencies on any other pipeline stages.
In addition, they apply slicing to transform graph structure
to leverage symmetry to update source and destination vertex
properties simultaneously. The scale at which [6] operates is
vastly different compared with this work, as it is evaluated
in a software version on a 16-core Xeon server with external
DDR4 DRAM. The ASIC version is simulated using CACTI
with a 64 MB on chip cache.

GraphP [7] is another example of a high-performance graph
accelerator architecture. GraphP uses processing in memory
to reduce data movement, which is enabled by 3-D stacking
of memories. They develop a vertex-centric model, featuring
a partition structure designed for “source-cut” partitioning to
reduce storage overhead. Due to the unique physical struc-
ture, the authors implement an overlapping communication
hierarchy for property updates. The overlapping comes from
updates when the vertex has been partitioned. A key feature of
the communication is that it is non-blocking. Local cores can
compute intermediate results without communication latency
to bypass the memory bandwidth limitation.

The memory storage bottleneck is not limited to CPUs.
Field-programmable gate arrays (FPGAs) are typically inca-
pable of storing large graphs in SSSP. Lei et al. [8] devel-
oped an extended systolic array priority queue (ExSAPQ) for
large-scale processing. Since they store information off-chip,
they are required to store duplicate copies of the look-ahead
parameter for each of the processing elements to prevent
data collisions similar to [7]. FPGAs have inherent paral-
lelism, which is leveraged by having concurrent execution. The
ExSAPQ ensures that no overflow happens when elements are
shifted off-chip. In all three of these examples, data movement
is the key design consideration.
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Fig. 4. 40 × 40 graph ASIC chip for solving SSSP problems based on 2-dimensional WF expansion [5].

As will be seen in this article, our A∗ chip positions the
processing inside the memory storage to eliminate the need
to store duplicate copies of the data and waste time reading
the scratchpad. Although the A∗ chip can only utilize four
neighbor connections, the speed of evaluation and efficiency
of memory-compute co-location help mitigate this limitation.
Modest architecture changes to accommodate diagonal routing
would include four additional I/O ports on each vertex and
extra metal routing. The key time-based idea would hold in
this expanded case.

III. TIME-BASED GRAPH ASIC

A schematic of the chip is shown in Fig. 4. The architecture
of the chip is based on a 40 × 40 4-neighbor grid. The
dimensions were chosen to maximize the test chip area. The
1600 vertices have connections in the cardinal directions to
adjacent vertices (N, S, E, and W). The key principle is the
proportional relationship between computation time and the
distance between nodes. This is accomplished by propagating
a pulse between the vertices through the edges. Detailed care
was taken during placement and layout to keep all routes
matched to preserve this relationship. The gradient on the
periphery of the array implements the distance biasing. Each
vertex operates autonomously and asynchronously; it senses
and stores the direction of the input pulses, prevents other
pulses from overwriting it through the lockout mechanism, and
propagates it to neighboring stages. The first pulse to arrive
latches the cell. It can also accept a set of simultaneous input
pulses without functional errors. The direction is decoded and
stored locally for readout and represents the fastest way to
reach that cell. Since the first pulse is the only pulse latched
in each cell, tracing the pulse chain back to the start will
reveal the shortest path. If more than one input gets latched,
either of the inputs can be selected through a simple trace-back
algorithm. At runtime, an arbitrary graph can be programed
by the user. Initially, the core was designed for SSSP, but

Fig. 5. Block diagram of the vertex. Modified from [5].

each evaluation contains all shortest paths to the start node
realizing a significantly more computationally intensive task.
The parallel and autonomous vertex control allows this to
happen in linear time. Section III-A–III-C will describe each
of the core circuit blocks in greater detail.

A. Vertex Cell

Fig. 5 shows the block diagram of the vertex cell. The
vertex consists of four I/O ports, a lockout mechanism, and
directional decoders. Storage is allocated as follows: four bits
for enabling output pulses for each direction, four bits for
storing which input arrived from that edge, and four bits for
control, including if the vertex starts the pulse. These cells are
distributed spatially with each direction circuit block. Cells
are accessed by tapping out the Q/Qb storage nodes directly.
The key lockout operation is described in Fig. 6. An input
is presented to the vertex from the north which latches the
vertex, and pulses are passed to the edges. In addition, late
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Fig. 6. Operation of the lockout mechanism. Input from North (left) causes
outputs to be generated and blocks south input (right). State changes are
highlighted in red. Modified from [5].

Fig. 7. Vertex circuit schematic. Modified from [5].

Fig. 8. Vertex timing diagram of lockout functionality. Modified from [5].

inputs are blocked from overwriting the cell state. Fig. 7 shows
the schematic of the vertex cell. A NOR tree merges inputs to
enable lockout. This is realized with the SR latch in the Pulse
Direction Detector in Fig. 7. Once the pulse has been decoded,
it is stored locally with a direct memory access (DMA) circuit.
The output is propagated to the output by the pulse repeater
if the cell is programed with a connection to that edge.

Fig. 8 shows a vertex timing diagram based on the following
example of two pulses arriving: North first and then South.

Fig. 9. Local SRAM storage encoding for traceback. Modified from [5].

Fig. 10. Edge unit schematic modified from [5].

First, a global enable signal, EN, is asserted. This enables the
core, which triggers a pulse in the array. The four inputs are
merged together in a detection circuit to determine whether
a pulse has arrived in the cell. In the example, IN<N> will
flow through and latch PI N , or Pulse Input. PI N is compared
with the input from each of the four directions. If PI N is
asserted and the input is not from the direction that asserted
PI N , Pulse Latch, in this example PL<{S, E, W}>, will assert.
PLb is connected to the SRAM DMA which will flip the
IP<{S, E, W}> SRAM that will be read out after evaluation
during the path traceback. IP<3:0> is initialized low and
the directions not activated are programed high after a pulse
arrives by the DMA circuit. The Readout Colormap Key
in Fig. 9 shows this encoding and will be carried through the
other figures in this article. In this example, the input arrived
from North, or “2,” giving the stored cell value 10112, or 1110

encoded as dark orange. Last, the pulse is propagated to the
neighbors that were not responsible for latching the cell and
have a connection stored in their respective local SRAMs. This
is where the “intra-memory computing” is realized; all circuits,
connections, and pulse propagation occur inside the footprint
of the physical memory array. Blockages are implemented
as all outgoing connections disabled. Anytime a cell is read,
it does so by tapping off the Q or QB, and the write happens
locally by the SRAM DMA circuit in Fig. 7. The layout of
the chip is constructed based on an SRAM architecture, which
enables regular routing and high area utilization.

B. Edge Unit

The edge unit passes the pulse between vertices via a
modulated delay through the analog gradient ladder and
local cap loading. The edge schematic is shown in Fig. 10.
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Fig. 11. Functional example of the gradient ladder. Modified from [5].

The delay is modulated by loading OUTB with 4 b MOSCAPs
with the gates of the switches tied to local SRAMs. These
4 b weights are programmed at runtime based on the values
from the map, and could also be used to compensate for
process variation. 4 b may not be enough dynamic range for
some applications, but it is complemented by the bias voltage
gradient (VX and VY) applied to each branch of the first
inverter. The bias voltage values are tapped off the resistive
ladder, which is proportional to the position of the edge in the
array determined by the gradient. This ladder will be described
in Section III-C. There are two NMOS branches to enhance
the current summation linearity. Shorting the drains could
have resulted in unequal contributions of the currents across
different locations in the array. As the gate voltages of the
NMOS increase, this would have reduced VDS which would
have had an outsized effect on the gate with the lower VG .

C. Gradient A∗ Mapping

Fig. 11 shows how the gradient cell implements the pre-
dicted distance to the target. Two adjacent sides have a resistive
ladder with taps at each row/column that span the entire core
array. Since this is a 40 × 40 array, there are 41 resistors
on each side. In addition, switches controlled by a register
chain are placed between each resistor to set the voltage to
V3 (max voltage in Fig. 11). On the ends of the resistive
ladder, there are two additional bias voltages (V1 and V2).
The difference between V3 and the other two voltages is
linearly dropped across each resistor, illustrated in the line
graphs. Each connection should have input impedance from
the MOSFET gate and draw very little current, thus current
should flow only in the ladder. Only one tap of the resistive
ladder is connected to V3, but an additional connection would
provide an unbiased section of the graph. The position of the
V3 connection corresponds to the location of the target, deter-
mined by the application requirements. In Fig. 11, the delay
of each cell based on the bias voltages seen by the X-direction
and Y-direction gradient is encoded in the color of the cells in

Fig. 12. Measured delay and linearity of the edge cell.

the array map. The darker colors correspond to the fastest cells
because the maximum bias voltage is at V3. As the distance
increases from the target cell, the bias voltage decreases
causing the delay to increase. This essentially accelerates the
pulse toward the destination in the same manner that the A∗
algorithm reduces the predicted cost as the search gets closer
to the target node.

IV. MEASUREMENT RESULTS

A. Edge Cell Delay Measurements

Fig. 12 contains the measurement results from the edge
cell delay. Fig. 12 (top) contains a plot of average edge
cell delay versus digital edge code for three different bias
voltages. Over the three bias voltages shown in Fig. 12, it is
possible to see how the delay can be modulated across the
array by the gradient resistive ladder framework introduced in
Section III-C. On the bottom, differential nonlinearity (DNL)
and integrated nonlinearity (INL) are shown. DNL measures
the difference between consecutive tuning levels, while INL
is the difference from measured to the ideal level. The Y-axis
represents these values normalized to one unit delay step. The
deviations in the DNL and INL appear to toggle between
positive and negative. This could be due to the least significant
bit in the capacitor bank not having a significant contribution
to the delay. This is apparent in the VB = 0.75 V trace in
the left plot. Every other point has a minimal increase in the
delay; edge code two and three have nearly identical delays.
In future designs, this could be rectified by increasing the size
of the access switch to increase the effect of the connected
capacitive load.

Due to the lack of high precision measurement circuits on
the chip and no ability to probe internal points during pulse
propagation, a unique strategy was required to generate the
delay curve on the left. The graph was programmed to have
only a single route across the chip, shown in Fig. 13(a). The
path started in the top left and traversed across the array to
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Fig. 13. (a) Programed map of the array. Single path is programed in a
zigzag pattern. (b) Readout from chip with disabled after 2.75 μs.

the right (light green trace) until the edge was reached. The
path moved down one unit and then proceeded back across
the core (dark orange trace). This was repeated over each row
in the array to yield the longest single path possible in the
chip. During measurement, the enable signal was precisely
controlled by off-chip test equipment. The total time enabled
was divided by the number of cells that the pulse traversed.
In the case of Fig. 13(b), the bias voltage was set to 0.6 V
and the pulse traveled through 446 cells, yielding an average
delay of 6.1 ns/vertex. This process was repeated for different
edge codes and bias voltages. To apply the same bias voltage
to all cells, {V1, V2, V3} were all set to the same voltage and
no connection was made on the gradient ladder.

B. Resistive Ladder Voltages

The voltage steps in the resistive ladder circuit were opti-
mized to increase the pulse propagation time relative to the
detection window without compromising the linearity of the
delay control. The detection window width is only two inverter
delays (setting the RS latch in Fig. 7), which was small
enough to remove the simultaneous arrivals during our testing
using the optimized voltage steps. For very large arrays with
numerous iso-delay paths; however, multiple inputs may still
arrive within the detection window even with careful voltage
step tuning. In this case, either of the paths can be chosen as an
acceptable solution as the objective of path finding algorithms
is not necessarily to find the golden solution but to find an
acceptable solution.

It is worth noting that the outgoing signals will be launched
according to the Pin signal timing (Fig. 7) and the SRAM cell
values. For instance, if two signals arrive and get latched in the
SRAM cells before the Pin signal fires, the other two outgoing
signals will be launched. An additional post-processing step
would be required to resolve the multiple input paths with
same delay. This could be achieved by tracing the parent paths
of each input, and if they share a common parent node, the path
with fewer steps could be assigned as the shorter path. Further
investigation on different post-processing methods would be
beneficial.

C. Process, Voltage, and Temperature Analysis

In time-domain computing, it is important to consider PVT
variations as it can affect the computation results. Next, we

TABLE I

MONTE CARLO EDGE DELAY SIMULATION

Fig. 14. Plus sign measured experiment shows the larger delay spread at
lower voltages seen by more variation in the triangle slices.

discuss the impact of each type of variation on the operation
of the proposed graph ASIC.

1) Process Variation: The proposed design is inherently
tolerant to global process variation since all vertex and edge
delays will be affected by the same amount. On the other
hand, local process variation may result in an error in the
arrival order for paths with similar delays. However, these
errors are not real concerns since either paths can be chosen
as the solution because of the modest impact (e.g., <10%) of
process variation on the path delays. Furthermore, the ratio of
the standard deviation to the mean (σ /μ) of the path delay
will decrease for longer paths comprising more delay stages
so the overall impact on the final solution will be even more
modest.

2) Voltage Variation: Supply voltage and bias voltage varia-
tion is critically important in this design, due to our leveraging
of current starved inverters to set the delay of the edges, while
implementing the gradient function. Table I lists the simulated
delays of the current starved inverter edge cells for different
bias voltages. The ratio of the standard deviation to the mean
increases inversely with VB . Fig. 14 shows an experiment
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TABLE II

COMPARISON TABLE [5]

designed to show how the increased variation causes errors.
Fig. 14 (top) was generated at VB = 0.6 V (larger variation),
and Fig. 14 (bottom) was generated at VB = 0.9 V (reduced
variation). Start cells are programed in the center in a plus
sign and the pulse is launched at the same time. When all
voltages {V1, V2, V3} in the gradient ladder are set to VB ,
the pulse expands at a constant velocity. It is apparent that
Fig. 14 (top) has more variation than Fig. 14 (bottom). This
manifests itself as the sprinkling of different colors in the map.
Ideally, each of the eight quadrants should be a solid color,
so any deviation from that is considered an error. Recall that
Fig. 9 describes the color encoding to the direction of the
input pulse. Fig. 14 (bottom) patterns are streaks of different
colors, which represent two different paths having equal time
of arrival at those points. This is more of a static offset, not a
random variation. Reducing the supply voltage would have a
similar effect, further increasing the variation and introducing
errors. This effect could be removed completely in our testing
by increasing the bias voltage. The tradeoff is the reduced
dynamic range of the delay. As seen in Fig. 12, the slope of
the delay reduces at higher VB . The total delay of the cell is
equal to the following equation:

tTotal = tVertex(VDD) + tEdge(VDD, VB). (2)

As VB is increased, tEdge decreases, while tVertex remains
constant. This means the effect of the gradient on tTotal reduces.
The specific application constraints should inform the user of
the target VB to achieve a balance in noise and gradient impact.

3) Temperature Variation: Temperature effects on perfor-
mance should be muted in this architecture for several reasons.
First, the distributed asynchronous evaluation methodology
of the proposed design decentralizes the key operations in
the chip resulting in reduced local heat generation. If one
considers a case where the start point is the center of the array
with no blockages, the pulse begins at the center of the chip
and radiates concentrically to the edges of the chip. The
number of cells evaluated at each time step increases at a fixed
step, the perimeter of a square or 4n. The area over which these
cells are dissipating power is n2. The power density decreases
proportional to 4/n making the self-heating impact modest
compared with circuits with higher activity factors. Second,
global temperature variation has little impact on the accuracy

of the path finding operation as all propagation delays of the
array will be affected in the same way. Third, local temperature
variation such as hotspots will not have a significant impact
on the local path finding operation as the delay stages in the
vicinity will be affected in the same way. Further simulation
studies would be required to quantify the effects of global
and local temperature variation, but our first order analysis
suggests that the basic operation of the proposed graph ASIC
is inherently tolerant to temperature effects.

D. Comparison Table and Chip Summary

Table II is mainly included for general comparisons between
architectures. References [9] and [10] are comparable in the
sense that they attempt to map hardware platforms onto
optimal A∗ implementations. It should be noted that the
current version of our A∗ core does not account for diagonal
movements or post-processing required to accommodate this.
Our peak power is quoted when all 156 perimeter vertices
are evaluating corresponding to the pulse originating from the
center, equating to 183.1 μW/vertex. 55% of the power is
due to SRAM access storing the pulse information in situ.
During the program, there is short-circuit current in the two
cross-coupled inverters of the SRAM. This fact highlights how
low the actual compute energy is; each vertex is evaluated
by toggling a few gates and two inverters on the edges.
Compared with the state-of-the-art FPGA [9], μP, CPU [10],
and GPU [10] implementations, our core has roughly five
orders of magnitude superior energy efficiency. The energy
does not include generating the bias supply or readout phase.
Because the answer is encoded in the spatial positioning,
the array needs to be read once, whereas in a conventional
approach, the memory would have to be read many more times
to retrieve data for processing.

Fig. 15 shows the die photo of the test chip. Table III
highlights the chip summary. The chip is fabricated in a 65-nm
LP CMOS process. The 40 × 40 array contains 1600 vertices
and 6400 edges. The perimeter vertex cells have dummy edges
to provide equal loading. The delay resolution on each edge
is a 4 b binary weighted capacitor bank in conjunction with
the analog bias gradient, which implements the A∗ heuristic.
At 1.2 V, the peak power is 26.4 mW (simulated), which
corresponds to every cell on the edge evaluating when a pulse
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Fig. 15. Die photograph. Modified from [5].

TABLE III

CHIP SUMMARY. MODIFIED FROM [5]

is started from the center of the chip. The delay per node is
1.79 ns at an edge bias of 0.9 V consuming 183.1 μW.

V. APPLICATIONS

A. Collision Avoidance via Voronoi Diagrams

The principle of the Voronoi algorithm is that it segments a
plane such that the partitions represent the closest position to a
start seed. In this ASIC, Voronoi diagrams are solvable when
no bias gradient is applied. When there is no gradient, the pulse
travels at a uniform velocity. This is precisely what k-nearest
neighbor classification in machine learning computes. Voronoi
diagrams also model various natural structure formations such
as bone structure and cell orientations. Computational fluid
dynamics meshes are also generated using these principles.
Collision avoidance for autonomous vehicles can also be
mapped to Voronoi Diagrams [11].

Fig. 16 highlights collision avoidance scenario. Pulses are
simultaneously launched from the sides of the obstacles
(shown as black boxes). Obstacles are implemented as having
all of their connections to adjacent cells disabled. Shown in
white is the path that maximized the distance between the
obstacles. In the bottom left of Fig. 16, the boundary between
obstacles “1” and “2” is highlighted. The white line is added as
a visual aid, but it is clear that the WFs met between the two
blockages. The other callout shows three WFs intersecting.
Along the top and side of the main array, the bias voltages for

Fig. 16. Collision avoidance example. Modified from [5].

V1 and V2 are equal at 0.9V. This application leverages the
autonomous vertex operation, vastly reducing the evaluation
time compared with a standard von Neumann machine, which
services each vertex serially.

B. Shortest Path Planning

SSSP motivated the development of this ASIC.
Fig. 17 solves SSSP from the top left (start, S) to the
bottom right (target, T). Finding a shortest path in a grid
without any blockages is trivial, as shown in Fig. 17(a).
Every down & rightward move will have the shortest path.
This is also seen by looking at the distance from S stored in
each node, and following an increasing path. However, when
blockages are present, it becomes a more interesting problem.
In the case of Fig. 17(b), all paths above the blockage in red
dominate the paths in green that go below. This is because
the lower path is required to move exactly left one unit,
instead of always down and right path in Fig. 17(a). Shown
in blue is where the two paths meet. In addition, Fig. 17(c)
solves the problem with a gradient in the A∗ framework. The
cost to move between the nodes is no longer a uniform step,
but the sum of the gray “voltage” in the row and column.
The gradient improves the dominant paths because the equal
point has moved one unit to the left (9 versus 12.2) yielding
a more efficient route.

In SSSP, Fig. 18 shows this example applied to the chip
under different bias conditions. In this application, a map is
shown with blockages shown as black blocks. The WF is
initiated in the upper left and propagates down and across the
core. Fig. 18 (left) does not have a voltage gradient applied
and each edge has the same weight. This gives the WF a very



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

EVERSON et al.: TIME-BASED INTRA-MEMORY COMPUTING GRAPH PROCESSOR FEATURING A∗ WF EXPANSION 9

Fig. 17. Path planning on grids (a) costs from Dijkstra’s algorithm,
(b) Dijkstra’s algorithm with blockages, and (c) A∗ via gradient.

Fig. 18. Measured results from path planning application without (left) and
with (right) the gradient. Modified from [5].

regular pattern as it traverses the map. Fig. 18 (right) has a
voltage gradient applied that is weakest in the top-left corner
and strongest in the bottom-right corner. The key difference
between the two outputs is shown in lower callouts. Without
the gradient, paths above and to the right of the blockage
supersede any paths under as shown by the orange strip and the
absence of arrows crossing into those paths. With the gradient
in Fig. 18 (right), the orange path is still present, but the “above
WF” is significantly faster than the “under WF” so much so
that it begins to wrap underneath the blockage shown by the
yellow cells. This is precisely the same observation seen in the
analytical example in Fig. 17. Further study could be applied
to modify the architecture so that data could be shifted in each

Fig. 19. Four-core example with time-multiplexed outputs interleaved to
shown full map. Modified from [5].

direction to act like a streaming processor to update the map
in real time.

C. Multicore Scalability

This ASIC is not limited to problems that map to a
40 × 40 grid. Fig. 19 highlights the scalability of this core via
a four-core measured example with a single blockage spanning
three cores. A simple rule to pick the vertex cells that have
a single input pulse whose direction is opposite the boundary
is used to determine the next start points in the following
core. In this example, Core0 starts the pulse, Core3 is partially
searched, and then Core1 is explored. It finds a new starting
point in Core2, which causes the remainder of Core3 to be
searched. The preceding analysis only is valid when all cells
have uniform delay. It is important to note that multicore
still solves the SSSP problem in linear time as the grid size
expands. Any delay differences would require a more com-
plex framework to timestamp pulse arrivals. It can be safely
assumed that any inter-chip communication will incur a large
overhead relative to the WF propagation in the single core. One
option to mitigate this could be to time-multiplex a single core.
The difference in the time to load a new map into the array and
evaluate it could be compared with the energy and overhead
from communicating with another die to determine optimal
use case. In addition, optimizing the array size including
using fewer elements in the array could control variation
impacts at a cost of higher controller/communication overhead.
This is a study well suited for future exploration including:
a simple processor to determine candidate start nodes, a router
framework for communicating between cores, and system
design to ensure intelligent allocation of board-level resources.

D. Optics Experiment

Motivated by [3], this ASIC can also model optics experi-
ments in Manhattan geometries to illustrate the utility of our
hardware architecture. The primary limitation is that natural
light follows Euclidean geometry. Fig. 20 shows a sampling
of the core readout at different time points during a single
evaluation of a two-slit experiment. The colors encode the time
at which the cell has been activated. The map of the programed
blockages is shown on the left. Note that in the top-middle
frame, no cells are searched below the first boundary. The
bottom-left frame is interesting in that the WF is split into two
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Fig. 20. Measured optics WF experiment. Evaluation at intermediate time points is used to visualize propagation. [5].

leading points. The resulting optical interference or collisions
is easily modeled in this ASIC. This behavior mimics what is
reported in [3] and has interesting consequences for future
physical explorations of novel applications with low-power
CMOS.

VI. CONCLUSION

In this article, an intra-memory computing ASIC graph
processor was detailed. The 40 × 40 array of asynchronous
processor vertices was used to solve SSSP. Each vertex oper-
ates asynchronously, which enables this chip to break the von
Neumann bottleneck and solve SSSP in linear time as grid
size increases. The circuit design details were discussed for
the key blocks. Measured edge delay was presented, as well
as a comparison table with conventional platforms used to
solve the SSSP. A diverse stable of applications was demon-
strated to highlight the utility of the core. Scalability concerns
were addressed with a multicore experiment or discussion of
time-multiplexing.
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