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Abstract— Nondeterministic polynomial time hard (NP-hard)
combinatorial optimization problems (COPs) are intractable to
solve using a traditional computer as the time to find a solution
increases very rapidly with the number of variables. An efficient
alternative computing method uses coupled spin networks to
solve COP. This work presents a first-of-its-kind coupled ring
oscillator (ROSC)-based scalable probabilistic Ising computer to
solve NP-hard COPs. An integrated coupled oscillator network
was designed with 560 ROSCs that mimic a coupled spin
network. Each ROSC can be coupled to any of its neighbors
using programmable back-to-back (B2B) inverter-based coupling
mechanism. The ROSC-based spins and B2B inverter-based
coupling were optimized to work under a wide range of system
noise as well as voltage and temperature variations. Randomly
generated 1000 max-cut problems were mapped and solved in the
hardware. The integrated Ising computer produced satisfactory
solutions of max-cut problems when compared with commer-
cial software running on a CPU. Experiments show that the
integrated CMOS-based Ising computer can find the solution to
NP-hard problems with an accuracy of 82%–100%. In addition,
the repeated measurements of the same problem showed that
the Ising computer can traverse through several local minima to
find high-quality solutions under various voltage and temperature
variation conditions. The experimental results show that ROSCs
are a potential candidate for a dedicated hardware accelerator
aiming to solve a wide range of COPs.

Index Terms— Annealing processor, combinatorial optimiza-
tion problem (COP), Ising computer, Ising model, oscillator-based
computation.

I. INTRODUCTION

MANY contemporary applications belong to a class
of computationally complex problems known as non-

deterministic polynomial-time hard (NP-hard) problems [1].
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The required time to find a solution to NP-hard problems
grows exponentially with the number of variables. The tra-
ditional von Neumann computers require very high computa-
tional power, significant energy, and a large area on a silicon
chip to solve these problems [2]–[4]. Recently, there has been
a breakthrough in solving NP-hard problems with nontradi-
tional computing methods, such as quantum computing [5],
artificial neural networks [6], and Ising computing [7]. Various
nontraditional computation methods target different sets of
NP-hard problems. For example, artificial neural networks
are widely used for classification applications, such as image
recognition. Combinatorial optimization problems (COPs) [8]
are another set of NP-hard problems with a wide range of
modern applications [9]–[13], such as data clustering, vehicle
routing problems, and network design, as shown in Fig. 1.
The solution space of COPs can be vast as it grows rapidly
with the number of variables. For example, traveling salesman
problem, a well-studied COP, has (n−1)!/2 possible solutions
for n number of cities. Similarly, the knapsack problem with
n possible items has 2n possible solutions.

The current trend in computation is to use specific proces-
sors or hardware accelerators to tackle particular problems.
An accelerator targeting COPs will reduce critical computation
time and energy for many modern applications. The Ising
computers can solve COPs very efficiently with a small area
and energy consumption. The concept of the Ising computer
is introduced in Fig. 2. The COP is mapped to the Ising
glass model [14]–[16] using an embedding algorithm that finds
equivalence between graph vertices and spins. For example,
the conceptual embedding example shown in Fig. 2 repeated
the “red” marked vertex multiple times to map the COP to
hardware. Next, the spin network naturally searches for the
minimum energy state by exploring various local minima using
the coupling dynamics. The final states or phases of the spins
constitute the hardware solution. The best solution is found
at global minimum, where the energy of the system, Ising
Hamiltonian, is the lowest. Further details of this emerging
computing model is provided in Section II.

Quantum computers solve COPs using a modified Ising
problem formulation. However, quantum computers only oper-
ate at the cryogenic temperature [17]–[19], which require
substantial energy consumption, a complicated system, and
major capital investment. Hence, an Ising computer that can
work at room temperature without the necessity of a complex
cooling system would be pivotal to its widespread adoption.
A CMOS-based Ising computer can overcome these

0018-9200 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Minnesota. Downloaded on March 14,2021 at 02:41:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1510-4219
https://orcid.org/0000-0002-4211-1564
https://orcid.org/0000-0002-4194-1347


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 1. Real-world COP applications.

Fig. 2. General workflow of Ising computers, from applications to obtaining
solutions.

challenges leading to several innovative chip designs. The
recent system-level implementations of CMOS-based Ising
computers are largely based on digital computation [20]–[23].
Digital implementations, especially those based on state-
of-the-art GPUs, can provide great advantages such as
floating-point resolution weights, all-to-all connectivity, and
flexible annealing algorithms while being supported by
a programming ecosystem and powerful cloud computing
resources. However, digital implementations are more deter-
ministic, which may not yield satisfactory results without
the help of stochastic random number generators [20], [22].
In addition, the annealing process requires thousands of
cycles for a digital processor as the cost function and spin
states need to be repeatedly evaluated and updated. On the
other hand, non-CMOS-based Ising computer proposals based
on spintronic, ferroelectric, or NEMS devices require spe-
cial processes [24]–[27], which may never be adopted by
mainstream foundries. Also, even non-CMOS-based Ising
computers require CMOS circuits for the coupling weight
storage and control, and individual oscillator phase read-
out. Breadboard-level demonstrations, such as those presented
in [28]–[30], are quite useful from a prototyping standpoint,
but eventually, these design concepts must be implemented in
an integrated chip for practical use.

A first-of-its-kind CMOS integrated coupled oscillator-
based Ising computer is proposed in this work to meet

Fig. 3. (a) Ising computer based on a network of spins. (b) Energy of the
spin network.

the challenges mentioned above. The scalable design with
560 ring oscillators (ROSCs) coupled with digitally program-
mable back-to-back (B2B) inverters mimics a 2-D spin-based
design [7]. The Ising computer probabilistically explores var-
ious local minima and finds a suitable solution under a wide
range of process, voltage, and temperature (PVT) variations.
Experiments showed that the proposed CMOS Ising com-
puter can solve random max-cut problems with an accuracy
of 82%–100%, compared to a commercial COP solver soft-
ware running on a CPU.

This article is organized as follows. The background of the
Ising model and the target problem is introduced in Section II.
Next, the circuit and architecture design is discussed
in Section III. Section IV contains the measured results and
analysis. Finally, Section V concludes this article.

II. BACKGROUND OF THE ISING MODEL

A. Ising Hamiltonian

The Ising model was originally proposed to describe the
behavior of a ferromagnetic material comprising an array of
magnetic dipoles. The individual spins, si = ±1, can interact
with their neighbors and can dynamically change their states
accordingly. The system energy is a function of the coupling
between the neighboring spins and the state of the spins. The
spins continuously change their states until the total system
energy is minimized. The system Hamiltonian, the total energy
of the system, is given as follows [31]–[33]:

H (s) = −
∑

i, j

Ji j · si s j −
∑

i

hi si . (1)

The coupling strength, Ji j , models the affinity between a pair
of spins, si and s j , whereas hi is the local field parameter
acting on spin si as a bias. Problems that can be described
using only the coupling coefficients, Ji j , are typically referred
to as Ising problems, while problems that require both Ji j and
hi are referred to as quadratic unconstrained binary optimiza-
tion (QUBO) problems. A system of spins with near-neighbor
connections is shown in Fig. 3(a). If the coupling strengths,
Ji j , are kept constant, H (s) will depend on the spin states.
The total number of available spin states is 2N , where N is the
number of spins in the system. The system will naturally try to
find the global minimum where the Hamiltonian is lowest, but
it may get stuck in one of the local minima states, as shown
in Fig. 3(b).
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Fig. 4. (Upper) Conceptual diagram and physical implementation of two
coupled oscillators. (Lower) Corresponding Hamiltonian function and truth
table.

Fig. 5. Fully-connected graphs with 2 spins and 5 spins, and corresponding
Hamiltonian functions.

B. Oscillators as Spins

To understand why a CMOS oscillator can be used as a
spin, let us consider two oscillators coupled with a single
resistor, R, as shown in Fig. 4 (top). The relative cou-
pling strength between these oscillators will be R ≈ J12

−1,
as a higher (bottom) resistivity will reduce (increase) energy
exchange. If J12 is positive, then the two oscillators will
eventually lock into the same phase, which can be interpreted
as s1 = s2. On the other hand, if J12 is negative, then the two
oscillators will lock into opposite phases, which corresponds to
s1 = −s2. The natural tendency of two oscillators locking into
the same or opposite phases according to the coupling polarity
and strength is equivalent to minimizing the cost function
H = −J12 · s1 s2. This can be seen in the truth table shown
in Fig. 4 (lower) where {s1, s2} = {+1,+1} and {−1,−1}
yield the ground states, when J12 > 0, and vice versa.

Next, this example is expanded to a network of five oscil-
lators, as shown in Fig. 5 (right). Each oscillator pair behaves
the same way, as shown in the above two-oscillator example.
Hence, the cost function (also known as the Hamiltonian
function) is the superposition of each pair-wise Hamiltonian

H (s) = −
∑

i, j

Ji j · si s j . (2)

Fig. 6. SPICE simulation results of three coupled oscillators. Top: all positive
coupling. Bottom: all negative coupling.

The network of five oscillators will collectively resolve to
a state that minimizes the contention between the oscillator
states, automatically finding the minimum energy ground state
of the system. This natural behavior of coupled dynamic
systems is exploited to solve COPs that can be mapped to
the Ising Hamiltonian function.

C. Choice of Graph Problem

The prior hardware implementations limited the number
of connections per spin as it is infeasible to implement an
all-to-all connected graph with O(N2) number of coupling
weights for large N values, where N is the number of
vertices [17], [19], [20]. For the same reason, a near-neighbor
architecture was chosen for the chip design. The COPs solved
using the chip testing were distinguished based on the follow-
ing definitions.

1) COPs With No Phase Contention: Some trivial COPs
can be mapped in a way that does not create any phase
contention between neighboring oscillators (ROSCs). Let us
consider a toy example shown in Fig. 6 where the coupling
weights are either all positive (top) or all negative (bottom).
For all positive coupling weights, two stable solutions exist:
{s1, s2, s3} = {+1, +1, +1} or {−1, −1, −1}. There are no
conflicts in this case as all oscillator pairs satisfy the positive
coupling condition. The simulated waveform shown in Fig. 6
(top) shows the oscillators move to a stable relative phase of
0◦ from randomized states.

2) COPs With Phase Contention: COPs with more complex
graph representations induce “conflict” of phases between
oscillators. Let us consider the toy example shown in Fig. 6
(Bottom). Here, all the oscillators are negatively coupled to
each other. Hence, a conflict exists between one of the three
oscillator pairs, as shown in the figure. As the oscillators
cannot satisfy all the coupling conditions with all their neigh-
bors, inevitably, some oscillator phases will see conflicts.
The simulated waveform of oscillators is shown in Fig. 6
(bottom), where the oscillators are allowed to assume any
phase freely. Without any conditions provided on the phases
of the oscillators, the final phases of the oscillators are 120◦
apart from each other. Practically, all real-world COPs have
contention or “frustrated” loops since these are the problems
that are hard to solve in polynomial time.
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D. Mapping COP to Ising Model: Max-Cut Example

NP-hard and NP-complete COPs can be mapped and solved
using the Ising model [33], including Boolean satisfiability,
traveling salesman problem, maximal clique/maximum inde-
pendent set (MIS), graph partitioning, knapsack problems,
and 0–1 integer linear programming (0-1 ILP). In this work,
a popular NP-hard problem called the max-cut problem was
mapped to the Ising hardware. Many applications from diverse
fields use the max-cut problem of graph theory [34], [35]. For
example, VLSI circuit designers use the max-cut problem to
find the optimum number of cross-layer connections, number
of vias, and other circuit and layout constraints [15].

The max-cut problem finds the largest cut value in an
undirected graph. If the vertices are divided into two groups,
S1 and S2, the cut value, Cgraph, is defined as follows:

Cgraph =
∑

i∈S1, j∈S2

wi j . (3)

Here, wi j is the edge weight between two vertices, i ∈ S1 and
j ∈ S2. By assigning binary spin values, si = ±1, (3) can be
rewritten as follows [36]:

Cgraph =
∑

i< j

wi, j
1 − si s j

2
(4)

= 1

2

∑

i< j

wi, j − 1

2
H (s) (5)

where H (s) is a Hamiltonian described in (1) with hi = 0

H (s) = −
∑

i, j

wi, j · si s j . (6)

Hence, the max-cut problem can be mapped to (1) when the
coupling strength between two spins, i and j , are symmetric
and Ji j = J j,i = −wi j . The local bias, hi , is zero for max-cut
problem. Assuming that the max-cut value is Cmax in (5), (5)
can be simplified using (6) as follows:

H (s) = −
∑

i, j

Ji, j + 2Cmax. (7)

III. CIRCUIT AND ARCHITECTURE DESIGN

In this section, the implementation details are provided for
the 560 coupled ROSC test chip fabricated in a 1.0-V 65-nm
low-power CMOS technology, starting with the ROSC and
coupling circuit design, to the modular unit cell and full-chip
architecture.

A. ROSC and Coupling Circuit Design

A seven-stage ROSC was designed, as shown in Fig. 7. The
ROSC was designed with six inverters and one NAND gate.
The gates were designed with stacked transistors to reduce
the ROSC frequency and process variation intentionally. The
measured frequency of ROSC was 118 MHz at nominal VDD
and room temperature. The NAND gate was used to program
and control the ROSC using global and local enable signals,
G_REN and L_REN, respectively.

In this work, a B2B inverter-based coupling mechanism
was used, as shown in Fig. 8 (top). The B2B inverters were

Fig. 7. Seven-stage ROSC with weak stacked gates for reduced frequency.

Fig. 8. Top: negative coupling between two ROSCs implemented using
B2B inverters. Bottom: simulation waveforms of coupled and buffered node
voltages showing locking behavior.

designed with stacked transistors to intentionally reduce the
coupling strength with respect to oscillator drive strength.
When the B2B inverters are too strong, the ROSCs stop
oscillation when solving COPs with phase contentions. On the
other hand, when the B2B inverters are very weak, the ROSCs
do not couple in the presence of noise and PVT variation.
Hence, the strength of the B2B inverters was carefully opti-
mized to enable locking behavior under various operating
conditions to solve COPs with phase contentions.

Similar to the ROSC, each digital B2B inverter is controlled
with global and local control signals, which generates the
WEIGHT_EN signal. When WEIGHT_EN = 0, the ROSCs
are not coupled and are free to oscillate any phase. On the
other hand, ROSCs are coupled with a coupling coefficient
of “−1” when WEIGHT_EN = 1. Fig. 8 (bottom) shows
the waveform of the coupled oscillators simulated at 1.0 V
and 25 ◦C. The coupled nodes, VRO1C and VRO2C, exchange
energy for a few cycles as can be seen by the reduced voltage
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Fig. 9. Modular cell circuit blocks. (a) ROSC block. (b) Coupling block.
(c) Phase readout block. (d) Scan block.

swing, and then arrive at the steady state with rail-to-rail
voltages. On the other hand, the buffered nodes, such as VRO1

and VRO2, always maintain full rail-to-rail swing. At steady
state, the oscillators have a phase difference of 180◦, which
can be denoted as s1 = +1 and s2 = −1, or vice versa.

B. Modular Unit Cell

The modular unit cell consists of an ROSC block, a coupling
block, a phase readout block, and a scan block, as shown
in Fig. 9. The ROSC block and the coupling block are
described in Section III-A.

Each ROSC can be programmed with the local enable
signal, L_REN, which is stored in the scan block. On the other
hand, the global enable signal, G_REN, controls all ROSCs
in the array. The coupling block consists of three digitally
programmable B2B inverters that couples the unit cell to three
neighbors, as shown in Fig. 9(b). The other three coupling
connections come from the neighbors, making the total avail-
able coupling connections to six. We use “negative” phase
coupling to demonstrate the max-cut problem [33]. Similar to
the ROSC, the coupling inverters are also designed with both
global and local enable signals, G_CEN and L_CEN < 1:3 >,
respectively. The local enable signals are stored in the scan
cell. Hence, any cell can be programmed to couple with any
of its neighbors using the L_CEN signals that are controlled
with the scan chain. In addition, the G_CEN signal can
be used to control when the coupling B2Bs are activated.
Thus, the chip can remain deactivated in the programming
mode.

Fig. 9(c) shows the phase readout block, which measures the
relative phases of the neighboring unit cells. The read block
has programmable multiplexer circuits (MUXes), a program-
mable delay unit, and a flip-flop. The first set of MUXes is
used to select one of the six neighboring unit cells for sampling
phases. Next, the second set of MUXes is used to choose
between the selected neighboring cell and the unit cell signals
as the input to the delay unit, which has 16 programmable
delay stages. The third set of MUXes is used to choose the
flip-flop’s data and clock inputs from the delayed and not
delayed signals. The chip can be programmed to delay the

Fig. 10. Proposed 28 × 20 hexagonally coupled array.

unit cell signal up to 16 units, while the neighboring ROSC
signal is not delayed, and vice versa. Therefore, the time
period of the ROSC is effectively divided by 32 units of delay.
Finally, the flip-flop samples the two signals and stores the
instantaneous phase information. The relative phases between
the ROSCs are reconstructed in postprocessing by varying the
delay stages. The programmable MUXes and the delay units
are controlled using a scan chain outside the core ROSC array.

Finally, the scan block is shown in Fig. 9(d) has four
flip-flops to program the local enable signals of the ROSC,
L_REN, and the local enable signals of the coupling blocks,
L_CEN < 1:3 >. The local enable signal allows any subset
of the ROSC array to be activated, and the oscillators can be
coupled with any number of their neighbors.

C. Full-Chip Architecture

Fig. 10 shows the core circuit of the Ising computer con-
sisting of a 28 × 20 array of modular hexagonal unit cells
representing the spin network. The modular unit cell makes
the proposed design highly scalable. The hexagonal structure
of the unit cell maximizes the number of neighbors per cell in
a 2-D plane, mimicking a spin-based system. Nearest neighbor
coupling was used where each unit cell has six neighbors, and
any unit cell can be programmed to couple with any number of
the neighbors. Each modular unit cell consists of three B2B
inverters to create three new connections to the neighbors,
whereas three other connections come from neighboring unit
cells. As edge cells do not have six neighbors, the total number
of use programmable B2B inverter was 1585, and any subset
of these B2B inverters can be activated. The ROSCs in the
system can have two allowed stable phases, which are denoted
as states “−1” and “+1,” as shown in Fig. 11(a). For a random
graph mapped to the chip, the Ising Hamiltonian depends on
the active coupling circuits. The individual ROSC phases will
settle to a state with less phase contention, which corresponds
to finding a low minimum point in the energy landscape,
as shown in Fig. 11(b). As will be seen in the experimental
data, the quality of the solution depends on the strength of
the ROSC and coupling circuit with respect to the inherent
random noise in the system.

Fig. 12 shows the CMOS Ising chip and unit cell layouts
and how the coupling between neighbors is designed. Fig. 12
(top right) shows how the unit cells are tiled in the chip
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Fig. 11. (a) Unit cells have two stable states, si = {+1,−1}. (b) Ising
Hamiltonian of the system which depends on the states of ROSCs and the
coupling weights, Ji j .

Fig. 12. Top left: chip layout. Top right: unit cell coupling to three neighbors.
Bottom: layout of the modular unit cell.

and the available coupling connections between neighbors.
Fig. 12 (bottom) shows unit cell layout with various blocks.
We intentionally overdesigned the read block with 4-bit
(=16 levels) resolution in delay, which increased the unit cell
area but was necessary for good testability. The final layout
shows that the ROSCs and B2B inverters occupy a relatively
small area (∼15%) compared to the read and scan flip-flops
and MUXes used for programming the coupling weights and
sampling the phases.

The test chip was fabricated in a mature 1.0-V 65-nm
low-power CMOS technology. The die microphotograph is
shown in Fig. 13 along with feature summary table. The area
of the 560 coupled oscillator array is 0.53 mm2. The average
power of the chip was 23 mW or 41 µW per oscillator.

IV. MEASUREMENT RESULTS

A wide range of experiments were performed to determine
the probabilistic nature of the chip, the efficacy of the design
at various PVT conditions, and the statistics of the solution
quality for various graph problems. The measured results
were compared with a commercial COP solver software,
LocalSolver [37], which requires 1–10 s to solve max-cut
running on a typical desktop computer.

Fig. 13. Die photograph and summary of the 65-nm test chip.

Fig. 14. Mapping a random graph generated using MATLAB to the ROSC
array.

A. Mapping and Solving COPs With ROSC Array

As most known data sets of max-cut problems [38] have
more spin variables than the current test chip can accommo-
date, random graphs that can fit into the fabricated test chip
were generated for this work. Fig. 14 shows an example of a
graph mapped to the chip. A random graph is generated using
MATLAB. The graph has two components: vertices or nodes,
and edges. The vertices represent the variables of a COP and
are implemented using ROSCs. On the other hand, the edges
represent the relationship between those variables. The random
graph was generated in a way that each vertex or node of
the graph can be directly mapped to one ROSC in the array,
as shown in Fig. 14. In this work, graphs with weights {0, 1}
were used, which is mapped to the chip as a coupling weight
of {0,−1}, as discussed in Section II-D. Hence, any edge or
connection between vertices can be represented with a single
digitally programmable B2B inverter. When two vertices have
an edge weight of +1 (edge weight of 0), the corresponding
B2B inverter is programmed to active (inactive) using the
relevant L_CEN signal shown in Fig. 9(b). The ROSCs
and B2B inverters were programmed with appropriate local
enable signals using the scan block shown in Fig. 9(d). Next,
the global ROSC enable signal, G_REN, and global coupling
enable signal, G_CEN, were used to start the computation.
The ROSCs find a steady state based on the activated coupling
B2B inverters.

The phases of the ROSCs were sampled using the phase
readout circuits shown in Fig. 9(c). The phases of the ROSCs
correspond to the spin states of the Ising model, which in turn
represents the solution of the mapped problem. COPs with
no phase contention and with phase contentions were mapped
to the chip, as described in Section II-C. The COPs with no
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Fig. 15. Example of COPs solved using the test chips. Each edge corresponds
to a −1 coupling weight. Left: graph with no phase contentions. Right: graph
with phase contentions.

phase contention do not create any coupling “confusion” for
any of the oscillators. Fig. 15 (left) shows an experimental
solution of a COP with no phase contention. Here, the COP
is a checkerboard pattern where each ROSC is negatively
coupled to four of its neighbors: up, down, left, and right. The
green and red marked oscillators represent spin states “+1”
and “−1,” respectively. The chip can solve these problems with
an accuracy of 98%–100%. On the other hand, Fig. 15 (right)
shows the experimental results of a COP with phase con-
tention, where the coupling connections between ROSCs are
chosen randomly. Hence, the ROSCs in the system have phase
contentions with their neighboring oscillators. Experimental
results showed an accuracy of 82%–100% when solving COPs
with phase contentions.

B. Probabilistic Exploration of Local Minima

Ising computers aim to find the best solution by exploring
various local minima. The exploration ends when the Ising
computer finds a minimum that it cannot escape. The trajectory
of spin states of the Ising computers should not be deter-
ministic to achieve higher quality solutions. A probabilistic
exploration tends to find a better solution and is a very crucial
characteristic to solve difficult COPs [20].

The chip was programmed, measured, and reprogrammed
100 times using the graph shown in Fig. 16(a). Each iteration
produced a different solution than the previous one. Fig. 16(b)
shows the normalized max-cut results for each iteration.
Interestingly, each iteration produced very similar results as
max-cut can have multiple similar solutions. Hence, although
the solutions of different iterations are not the same, the qual-
ity of the result is surprisingly consistent. The Hamming
distance between the iterations was computed to determine
the randomness of the solutions. If the solutions were the
same, then the Hamming distance would become 0. On the
other hand, if the solutions were completely opposite, then
the Hamming distance would become 1. However, the distri-
bution of Hamming distances between iterations was found to
be around 0.5, as shown in Fig. 16(c), which confirms that the
solutions were very different from each other.

The results from repeated measurements of the same graph
problem prove the chip’s ability to converge to different local
minima rather than finding a deterministic solution for a
given COP. The probabilistic nature of the chip and traversing
through multiple local minima helps the chip to find decent
solutions to difficult COPs.

C. Problem Size Dependence

Random graphs of various dimensions ranging from a 6×6
graph to a 26 × 18 graph were generated and solved using
the chip. The measured solutions for COPs without phase
contentions have an accuracy between 98% and 100%. This
section will be focused on the COPs with phase contention.

For each problem size, 150 different problems were mapped
and solved using the chip. Each problem was repeated only
three times to reduce the total measurement time. For com-
parison, various prior arts, such as quantum computers [17],
often repeat measurements thousands of times to achieve a
decent solution. The measured results were compared with
two software-based solutions. One of the solutions is from
commercial COP solver, LocalSolver. The other software
solutions are generated from 1 million Monte Carlo simulation,
where the solutions were sampled from the entire solution
space.

Fig. 17 shows the distribution of normalized max-cut solu-
tions measured from the chip under nominal VDD and 25 ◦C.
The chip results are consistently better than the best solution
from Monte Carlo runs, which proves that the solution space
is so vast that even one million samples could not generate
a better result than the CMOS Ising computer. For smaller
graphs, such as 6 × 6, the chip finds cut values within 95%
of LocalSolver. For a larger graph, such as 26 × 18, the chip
finds an average cut value within 82% of the software solution
with just three repetitions. The solution quality increases with
the number of repetitions, as is evident from the experiments
shown in Sections IV-B and IV-D. A common heuristic finds a
max-cut solution within 88% of optimal result [39], indicating
that the chip solutions may be satisfactory for practical appli-
cations. The lowest precision found in this work was 82%,
with only three repetitions at room temperature for COPs
with phase contentions. Hence, applications requiring more
precision may not be benefited from the hardware solution.
However, the time and energy to find the solution using a
traditional computer are much larger (1–10 s) than the chip
(200 ns). Hence, lightweight moderate-accuracy applications
may still get benefit from such designs as they can be solved
locally without the need for large computing resources.

D. Variation of Process, Temperature, and Supply Voltage

The experiment described in Section IV-B was repeated
using five different chips at 25◦C and nominal VDD. The
noise profile and relative strength of coupling B2B invert-
ers are different in each chip due to chip-to-chip variation.
However, Fig. 18(a) confirms that different chips consistently
achieved decent solutions. Fig. 18(b) shows the histogram of
the normalized max-cut results measured from the five chips,
which show a modest difference due to process variation.
These experiments show that an integrated Ising computer
can achieve high-quality solutions despite the chip-to-chip
variations.

Next, the same experiment was performed at three ambient
temperatures, −40 ◦C, 25 ◦C, and 90 ◦C, using a tempera-
ture chamber. Fig. 19 shows the normalized max-cut results
measured at various temperatures and nominal VDD.

Authorized licensed use limited to: University of Minnesota. Downloaded on March 14,2021 at 02:41:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 16. (a) Random graph is measured 100 times. (b) Quality of max-cut remains similar. (c) Hamming distance between iteration shows the chip found
different solutions.

Fig. 17. Normalized max-cut distributions for 150 COPs with phase contentions at 25◦C and 1.0-V VDD: measured results are compared with 1 million
randomly sampled solutions from whole solution space for each specific graph. The red dotted line shows the normalized software solutions.

Fig. 18. (a) Normalized max-cut at various iterations. (b) Histogram from five chips at 25◦C and 1.0V VDD.

Fig. 19(a) shows the measured max-cut solutions at −40 ◦C.
At lower temperature, such as at −40 ◦C, ROSC (spin) and the
B2B inverter (coupling) circuits are less susceptible to noise.

The reduction of noise makes it harder for the Ising computer
to get out of local minima to explore various solutions. Hence,
the depths of local and global minima wells are increased as
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Fig. 19. Measured max-cut at (a) −40◦C, (b) 25◦C, and (c) 90◦C. System energy profiles at (d) −40◦C, (e) 25◦C, and (f) 90◦C.

Fig. 20. Normalized max-cut results at VDD 0.8 V and VDD 1.0 V measured at the temperature of (a) −40◦C and (b) 25◦C.

shown in Fig. 19(d) when compared with the energy profile
of 25 ◦C, as shown in Fig. 19(e). As a result, the system
gets trapped in a local minimum point more easily at lower
temperatures due to the larger hills and valleys in the energy
landscape. Hence, solutions at −40 ◦C are on average inferior
to that of 25 ◦C, as shown in Fig. 19(b). However, the Ising
computer found solutions closer to the best solution, such as
the normalized max-cut value of 0.98 or higher, a similar
number of times in both 25 ◦C and −40 ◦C. Hence, increasing
the number of iterations as well as reducing coupling strength
at a lower temperature may be a practical solution to increase
the average accuracy of mapped COPs.

On the other hand, the max-cut solution at 90◦C consistently
yielded lower quality results, as shown in Fig. 19(c). The
system noise increases at a higher temperature, such as 90◦C,
and the circuits become weaker and more susceptible to
noise. In addition, as the coupling becomes relatively weaker,
all ROSCs in the system may no longer maintain the two
stable phases. These effects result in a shallower depth of the
various minima points in the system energy profile, as shown
in Fig. 19(f). Hence, the Ising computer may not be able to
remain at a “good” minimum due to shallower hills and valleys
in the energy landscape. The inferior results at 90◦C may be
attributed to both the Ising computer’s inability to remain in a
good minimum point due to relatively higher noise as well as

an erroneous sampling of less stable phases. A potential solu-
tion could be using a variable strength coupling mechanism,
which was not available in this design.

Similarly, the same experiment was conducted at a lower
supply voltage. The effects of the lower supply voltage are
similar to that of a higher ambient temperature. The sys-
tem noise is increased at lower supply voltage, and both
ROSC (spin) and B2B inverter (coupling) circuits are weaker.
Fig. 20(a) and (b) shows the normalized max-cut solutions
at two different temperatures and supply voltages. Fig. 20(a)
shows at −40 and ◦C, the Ising computer was finding
the best solution more frequently at VDD = 0.8 V than
VDD = 1.0 V. At the same time, the inferior solutions were
also more common for VDD = 0.8 V. At the lower tempera-
ture and lower noise, a relatively weaker coupling mechanism
helped the Ising computer get out of local minima and explore
other possible solutions. However, the Ising computer may
get stuck in some minima and produced low-quality results.
On the other hand, at 25 and ◦C, the lower supply voltage
case was constantly producing inferior results. As the system
was optimized for nominal VDD, the system noise domi-
nated the coupling mechanism at the lower supply voltage.
As the system was not designed with a variable coupling
strength control, the Ising computer could not overcome higher
noise.
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TABLE I

COMPARISON WITH PRIOR WORKS

PVT variation experiments showed that the relative strength
of coupling and noise influences the quality of the solution.
Although the system was optimized to operate at 25 ◦C and
nominal VDD, the best solutions can be achieved at −40 ◦C at
both nominal and low VDD. Interestingly, the chip found the
best solution more frequently at −40 ◦C and V DD = 0.8 V.
On the other hand, solution quality degraded at more noisy
systems, such as at 90 ◦C, as the coupling strength could not
be increased to overcome higher noise. These experiments
underscore the necessity of a dynamic coupling strength
control at various PVT corners to yield better quality solutions.

E. Comparison With Prior Work

A comparison with the prior work with this one is
shown in Table I. Previous implementations of spin net-
works require quantum devices operating at cryogenic tem-
peratures, are based on digital logic without the coupling
dynamics, or require special processes [17], [20]–[25]. Akey
difference between this work and digital approaches is the
coupling mechanism and evaluation. In this work, direct
energy exchange was enabled between oscillators via the B2B
inverters. On the other hand, the “stochastic hill-climbing”
algorithm is efficiently implemented in [20]–[23] where the
coupling and annealing are mimicked using digital logic.
As digital implementations are deterministic, these proposals
require introducing additional stochasticity through random
number generators to achieve a higher quality result. Our
ROSC-based design has inherent stochasticity stemming from
the noise and PVT variation, which assists the exploration of
various possible solutions.

The lack of implementation details and accuracy statistics
of previous proposals makes it difficult to thoroughly compare
various approaches. For example, the power requirements were
not reported in [24] and [25]. In addition, the total number of
measured solutions in [20]–[25] were much smaller compared
to this work. Hence, a comparison of accuracy statistics
between various approaches would not be accurate. Moreover,
the graph problems demonstrated in various prior proposals,
such as in [20]–[23], were COPs with no contention. This
work demonstrated COPs with no phase contention and with
phase contentions.

V. CONCLUSION

This work presents a first-of-its-kind coupled ROSC-based
scalable probabilistic Ising computer for NP-hard COPs.

The B2B inverter coupling of 560 ROSCs produced satis-
factory solutions of difficult max-cut problems. In addition,
the repeated measurements of the same problem showed that
the Ising computer can traverse through several local minima
under various temperatures and supply voltage conditions.
The quality of the produced solutions varied depending on
the strength of the ROSC and coupling devices with respect
to the noise magnitude. Experimental results confirm that
the proposed design can overcome chip-to-chip variation and
achieve high-quality solutions.
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