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Ising Spin Glass Model
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Using Nature to Find the Ground State
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Example Problem #1: Factorizing 15

P=1(x11);,q9=(x2%x31),;
H = (15 — pq)*

H = 128xyx5x3 — 56x1x5, — 48x1x3 + 16x,x3 — 52x1 — 52x,-96x3+196
Hmod = ZOOXJ_XZ — 48X1X3 — 512X1X4 + 16X2X3 — 512X2X4 +

128x3x, — 52x1 — 52x5 — 96x3+768x,+196

S. liang, et al., “Quantum Annealing for Prime Factorization”, Scientific Reports 2018



Example Problem #2: Graph Coloring

For graph G(V,E) of the map problem—no two vertices, V, connected by an edge, E, .8 Xminn,Red = 0, Xminn,Biue = 0,
should select the same color from set C—construct a cost function with binary variables, 0

) ) . XMinn,Sand = 1, XMinn,Green
Xy, = 1 when v € V selects color ¢ € C, by implementing two constraints:

XWisc,Red — 0, XWisc,Blue = 1,
(va,c - 1)2; XWisc,Sand = 0, Xwisc,Green = 0
C

which has minimum energy (zero) when vertices select one color only, and

2 E Xva,cXvp,0/

C va,0,€E

which adds a penalty if the vertices of an edge select the same color.

These constraints give a QUBO,

E(xv: xva,vb) = Z(Z Xv,e — 1)2 + Z E Xvg,cX0p,c-
v

€ vg,vp€E

D-Wave Problem-Solving Handbook, 8/13/20



Example Problem #3: Finding Max-cut

* The problem of finding a maximum cutin a 10 0,

graph is known as the Max-Cut Problem ‘; ________ Ll '

* Finding max-cut of a graph is an NP-hard Y 2 \
problem !

Cut size =12
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Cut size = 16 (max)



Example Problem #3: Finding Max-cut

H(o) = —z(—Wij) 0;0j
L,J

= z (—wij) + z Wij

dif f group same group
- 3 e[S 5w
diffgroup . LEJ...... diff group
all - dif f group :
Cut size

H = Hamiltonian of the system
0; = Spin status of magnet i {+1 or -1}
w;; = weight between magnets i and j

Ising Hamiltonian = [sum of all weights] — 2x[cut size]



Other NP Problems Mappable to the Ising Model

e Partitioning problems (e.g. max cut)

* Binary integer linear programming

* Covering and packing problems

* Problems with inequalities

* Coloring problems (e.g. graph coloring)
 Hamiltonian cycles (e.g. traveling salesman)
* Tree problems

* Graph isomorphisms

A. Lucas, “Ising formulations of many NP problems”, Frontiers in Physics, Feb. 2014



Using Coupled Oscillators to Find the Ground State
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H(s) = —Jijsis;
if J;; >0, then {s;,s; }={+1,+1}or {-1,-1}
: Same phase
if J;; <0, then {s;,s; }={+1,-1}or {-1,+1}
: Opposite phase
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Using Coupled Oscillators to Find the Ground State

1.0V, 65nm LP, 25°C
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Comparison of Coupled Oscillator Technologies
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Target NP-hard and NP-complete combinatorial optimization problems (e.g. supply chain, Al/ML, transportation,

applications

smart grid, communication, IC design, bioinformatics, computer vision, and robotics)

13




Outline

* Case Study: 560 Coupled Oscillator Test Chip



ROSC Coupled Using Digital Latches
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* Any coupling medium that enables energy transfer may couple ROSCs

 ROSC and digital latches are designed with global and local enable signals



Choice of Architecture

ROSC waveform Cell state
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28x20 ROSC array ’ ’
OSC 560 _,_u_u_l_,_l_,_ Ss560 = 1

Proposed architecture ROSC waveform and unit cell states

Ising Hamitonian (Esystem)

Esystem = -

n; = number of coupled neighbors of i-th cell,
Jj = coupling weight between cells i and j

S i@

% {
, : .
A Global Local
lminlimal lmlnllma]

Cell states (2°°°~3.8x10"®® combinations)

System energy of the Ising computer

Hexagonal unit cell maximizes the number of neighbors in 2D plane

Latch based coupling between cells is digitally controlled
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Die Photo and Chip Summary

£

Read On-chip
scans | CEK

28x20 hexagonally

coupled ring oscillator
array

T LTI LY

1.2mm "
Die photo Full chip layout

Application

Combinatorial
optimization problems

Process

65nm CMOS

Architecture

ROSC, latch based
coupling, self-annealing

Voltage 1.0V
Chip: 1.44mm?
Area Core: 0.53mm?
Unit cell: 0.00095mm?
Peak power 23mW
Power per cell 41uW
Chip summary

e 28x20=560 coupled oscillators (only limiting factor is chip area)

* Oscillator area < 5% of the full chip area
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Embedding Ising Problem to Hardware

Oscillator
— B2B inverters
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Max-cut Results for 15x15 Graphs

4077150 difficult max-cut problems
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30 search space: 2'°'°5.4x10° | gm Testchip results
2 (3 repetitions)
;; 20
o 10 gg 1M random solution
a per problem

0

0 02 04 06 08 1
Normalized cut-value

150 difficult COPs are mapped and max-cut results are measured for each graph sizes
* Measured results are compared with 1 million randomly sampled solutions from the
solution-space for each specific graph.
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Max-Cut Results for Different Graph Sizes
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Repeated Experiment for Same Graph
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Temperature versus Solution Quality
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Takeaways

* NP-hard problems could be the key driver for future computing growth

* A true coupling based integrated CMOS Ising chip was demonstrated in 65nm

 No emerging devices needed (old saying: anything that can be done in CMOS, will be
done in CMOS)

* Probabilistic exploration of various local minima
* Mapped and solved 1,000 COPs in the chip with an accuracy of 82%-100%

* For oscillator based computing to be a viable approach however, there has to
be a clear and significant power-performance-area advantage over

 Mathematical optimizers (available today)
 GPU, FPGA, Custom ASICs, digital annealers (available today)

* Quantum computers
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