IEEE Custom Integrated Circuits Conference

Coupled Oscillator based Computing: Using Nature to Solve Difficult Problems

Chris Kim University of Minnesota

March 26th 2021

Outline

- Introduction to Ising Computers
- Current State of the Art
- Case Study: 560 Coupled Oscillator Test Chip
- Commercialization Effort and Outlook
- Summary

Context and Disclaimer

- This presentation focuses on
 - a new computing paradigm
 - in early stages of research
 - that is highly exploratory and somewhat finicky
 - with very little experimental data available in public domain
- Sit back and relax (with an open mind)

Ising Spin Glass Model

 A promising approach for efficiently solving NP-hard or NP-complete problems (e.g. combinatorial optimization problems, Boltzman machines, associative memories, Karp's 21 NPcomplete problems)
$$\begin{split} H(s) &= -\sum_{\langle i,j \rangle} J_{ij} s_i s_j - \sum_i h_i s_i &: \text{Ising Hamitonian (Cost Function)} \\ s_i, s_j : \text{Spin state } \{+1 \text{ or } -1\} & J_{ij} : \text{Coupling strength} \quad h_i : \text{local field strength} \end{split}$$

Using Nature to Find the Ground State

Random states (time=0)

Same states (time = 1 min)

Example Problem #1: Factorizing 15

$$p = (x_1 \ 1)_2$$
, $q = (x_2 \ x_3 \ 1)_2$
 $H = (15 - pq)^2$

 $H = 128x_1x_2x_3 - 56x_1x_2 - 48x_1x_3 + 16x_2x_3 - 52x_1 - 52x_2 - 96x_3 + 196$

$$H_{mod} = 200x_1x_2 - 48x_1x_3 - 512x_1x_4 + 16x_2x_3 - 512x_2x_4 + 128x_3x_4 - 52x_1 - 52x_2 - 96x_3 + 768x_4 + 196$$

S. Jiang, et al., "Quantum Annealing for Prime Factorization", Scientific Reports 2018

Example Problem #2: Graph Coloring

For graph G(V, E) of the map problem—no two vertices, V, connected by an edge, E, should select the same color from set C—construct a cost function with binary variables, $x_{v,c} = 1$ when $v \in V$ selects color $c \in C$, by implementing two constraints:

$$(\sum_c x_{v,c}-1)^2,$$

which has minimum energy (zero) when vertices select one color only, and

$$\sum_{c} \sum_{v_a, v_b \in E} x_{v_a, c} x_{v_b, c},$$

which adds a penalty if the vertices of an edge select the same color. These constraints give a QUBO,

$$E(x_{v}, x_{v_{a}, v_{b}}) = \sum_{v} (\sum_{c} x_{v, c} - 1)^{2} + \sum_{c} \sum_{v_{a}, v_{b} \in E} x_{v_{a}, c} x_{v_{b}, c}.$$

e.g. $x_{Minn,Red} = 0, x_{Minn,Blue} = 0,$ $x_{Minn,Sand} = 1, x_{Minn,Green} = 0$ $x_{Wisc,Red} = 0, x_{Wisc,Blue} = 1,$ $x_{Wisc,Sand} = 0, x_{Wisc,Green} = 0$

D-Wave Problem-Solving Handbook, 8/13/20

Example Problem #3: Finding Max-cut

- The problem of finding a maximum cut in a graph is known as the Max-Cut Problem
- Finding max-cut of a graph is an NP-hard problem

Example Problem #3: Finding Max-cut

H = Hamiltonian of the system σ_i = Spin status of magnet i {+1 or -1} w_{ij} = weight between magnets i and j

Ising Hamiltonian = [sum of all weights] - 2×[cut size]

Other NP Problems Mappable to the Ising Model

- Partitioning problems (e.g. max cut)
- Binary integer linear programming
- Covering and packing problems
- Problems with inequalities
- Coloring problems (e.g. graph coloring)
- Hamiltonian cycles (e.g. traveling salesman)
- Tree problems
- Graph isomorphisms
 - •

A. Lucas, "Ising formulations of many NP problems", Frontiers in Physics, Feb. 2014

Example of Graph Embedding

順 CICC

Using Coupled Oscillators to Find the Ground State

 $H(s) = -J_{ij}s_is_j$ if $J_{ij} > 0$, then $\{s_i, s_j\} = \{+1, +1\}$ or $\{-1, -1\}$: Same phase if $J_{ij} < 0$, then $\{s_i, s_j\} = \{+1, -1\}$ or $\{-1, +1\}$: Opposite phase

Using Coupled Oscillators to Find the Ground State

Super Harmonic Injection Locking (SHIL) Signal

Other Oscillator Devices

Superconducting qubits

Phase transition material

Magnetic tunnel junctions

CMOS

Cavity parametric oscillator

MEMS/NEMS

Ferroelectric

Sources: Google image, IEDM 20, EDL2017, Science 2016

Comparison of Coupled Oscillator Technologies

	Qubit	Optical	Phase transition	Spintronic	CMOS
Conceptual figure		PPUI Wargdab PILOT Data PILOT DATA PILO	V _{DD} VO ₂ Oscillator output Injection signal	Provide the second seco	ROSC2 Phase comparator ROSC1 CONTROL
# of oscillators	~2000	100-2000	4	8	2000+
	(single chip)	(lab setup)	(probe station)	(board level)	(1.3mm ² chip in 65nm)
Advantages	Under debate	Room temperature	Room temperature	Room temperature	Room temperature, leverages CMOS, cloud/edge computing
Disadvantages	Cryogenic cool, 25kW power, premature tech. cloud only	1km optical fiber, FPGA chip, complex setup	Premature device, no real area advantage over CMOS	Premature device, no real area advantage over CMOS	Will it outperform GPUs and software solvers?
Integrated system in 10 yrs?	No	No	No	No	Yes
Target	NP-hard and NP-complete combinatorial optimization problems (e.g. supply chain, AI/ML, transportation,				
applications	smart grid, communication, IC design, bioinformatics, computer vision, and robotics)				

Outline

- Introduction to Ising Computers
- Current State of the Art
- Case Study: 560 Coupled Oscillator Test Chip
- Commercialization Effort and Outlook
- Summary

Breadboard and PCB Implementation

T. Wang, arXiv, 2017 (UC Berkeley)

T. Wang, arXiv, 2019 (UC Berkeley)

Pros:

Can achieve coupling dynamics, good for proving the concept

Cons:

Not practical for large number of programmable spins, not an integrated solution

Breadboard and PCB Implementation

(e)

Can achieve coupling dynamics, good for proving the concept, all-to-all coupling using crossbar architecture

Cons:

Not practical for large number of programmable spins, not an integrated solution

Time [µs]

ASIC Implementation

M. Yamaoka, JSSC, 2016 (Hitachi) T. Takemoto, ISSCC, 2019 (Hitachi) Spin $\sigma_{\rm s}$ Coefficient J_{25} Interaction calculation Coefficient J $\sigma_4 \leftarrow$ Coefficient J $\overline{J_{89}}$ J_{78} Coefficient J_z CMOS Ising computer σ_{c} $\sigma_{\rm s}$ SRAM **Digital circuits**

Pros:

Can theoretically solve a wide variety or problems

<u>Cons:</u>

- 1. No coupling dynamics : computation time and energy may be higher
- 2. Search for better solution is time dependent

ASIC Implementation

T. Takemoto, ISSCC, 2019 (Hitachi)

	D-Wave 2000Q	ISSCC2015 (previous)	This work
Method	Quantum annealing	Simulated annealing	
Accuracy	Better	Not so good	Good
Implementation	Superconductor	65-nm CMOS	40-nm CMOS
Number of connected chips	No	No	2 (multichip in principle)
Number of spins	2k	20k	2 × 30k
Bit width of coefficients	N/A	2 bits	3 bits
Annealing time*	N/A	10 ms***	22 μs
Energy efficiency* [,] **	N/A	2200 times***	1.75×10^5 times

(i) 0 μ s (initial state)

(iii) 21.8 μ s (final state)

Pros:

Can theoretically solve a wide variety or problems

Cons:

- 1. No coupling dynamics : computation time and energy may be higher
- 2. Search for better solution is time dependent

ASIC Implementation

S. Matsubara, et al., ASP-DAC 2020 (Fujitsu)

Fig. 3. Conceptual diagram of speed-up achieved by DA

Outline

- Introduction to Ising Computers
- Current State of the Art
- Case Study: 560 Coupled Oscillator Test Chip
- Commercialization Effort and Outlook
- Summary

ROSC Coupled Using Digital Latches

- Any coupling medium that enables energy transfer may couple ROSCs
- ROSC and digital latches are designed with global and local enable signals

Choice of Architecture

- Hexagonal unit cell maximizes the number of neighbors in 2D plane
- Latch based coupling between cells is digitally controlled

Other Possible Architectures

Modular Unit Cell: Circuit Blocks

- Read block samples one of the neighboring ROSC
- Scan block programs the graph: four program bits per cell, 2,240 bits for the chip

Die Photo and Chip Summary

- 28x20=560 coupled oscillators (only limiting factor is chip area)
- Oscillator area < 5% of the full chip area

幅 CICC

Embedding Ising Problem to Hardware

Example Problems (Regular versus Random Graphs)

- Oscillator (+1 or -1 states)
 - B2B inverters (negative coupling)

Max-cut Results for 15x15 Graphs

- 150 difficult COPs are mapped and max-cut results are measured for each graph sizes
- Measured results are compared with 1 million randomly sampled solutions from the solution-space for each specific graph.

Max-Cut Results for Different Graph Sizes

Repeated Experiment for Same Graph

Temperature versus Solution Quality

Supply Voltage versus Solution Quality

- Lower VDD \rightarrow higher noise & weaker coupling
- Higher VDD \rightarrow lower noise & stronger coupling

Outline

- Introduction to Ising Computers
- Current State of the Art
- Case Study: 560 Coupled Oscillator Test Chip
- Commercialization Effort and Outlook
- Summary

Other Developments: Quantum Computing Startups

Investments: Dwave >\$204M IonQ > \$82M Rigetti > \$198M PsiQuantum > \$215M IBM, Toshiba, Hitachi, Intel, Google, Microsoft, NASA, LANL, Amazon AWS, Lockheed, ...

Challenges: Kilowatts of cooling power per chip Large form factor Limited scalability Expensive (e.g. \$15M/chip) Immature technology

Dwave Quantum Annealer

File Edit Selection View	Go Debug	Terminal	Workspace Help		СК
EXPLORER: CLUSTERING (Ċ 🗇	MI Preview	README.md 🔮 clustering.py × 🕨	PROBLEM INSPECTOR 2	:=
> □ _pycache > □ readme_imgs > □ tests			<pre>for coord in coordinates: csp.add_constraint(choose_one_group, (coord.r, coo # Build initial BOM</pre>	Problem Details v Solver Details v 📰 1 2	
clustering.py			bqm = dwavebinarycsp.stitch(csp)		
 clustering.py example_dusters.py four_points_entered.png tlCENSE README.md requirements.bt utilities.py 		68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 Your plot erd-png' Leap IDE e/cluster {'b': [(@ .)]} Your plot erd-png' Leap IDE e/cluster {'b': [(% .)]} Your plot erd-png' [(% .)]}	<pre>bqm = dwavebinarycsp.stitch(csp) # Edit BQM to bias for close together points to share for i, coord0 in enumerate(coordinates[:-1]): for coord1 in coordinates[i+1:]: # Set up weight d = get_distance(coord0, coord1) / max_distanc weight = -math.cos(d*math.pi) # Apply weights to BQM bqm.add_interaction(coord0.p, coord1.r, weight bqm.add_interaction(coord0.b, coord1.r, weight bqm.add_in</pre>	Source - Force Directed Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram Image: Source - Samples - Histogram <	C ×

ve-examples/clustering 🦹 master* 😴 Python 3.7.8 64-bit 🙁 0 🗛 0

In 5. Col 42 IF UTF-8 Spaces: 4 🖉 No open ports 🔀 Python 🛕 🗖

AWS Braket

Quantum Processing Units (QPUs)

D-Wave — Advantage_syst Quantum Annealer based on super qubits	rconducting	D-Wave — DW_2000Q_6 Quantum Annealer based on su qubits	perconducting	IonQ Universal gate-model QPU based on trapped ions		
Qubits 55760 (Region 1 us-west-2 (Status ONLINE Next available O AVAILABLE NOW	Qubits 2048 Region us-west-2	Status ONLINE Next available O AVAILABLE NOW	Qubits 11 Region us-east-1	Status ONLINE Next available 08:14:38	

Rigetti — Aspen-8 Universal gate-model QPU based superconducting qubits	l on	rigetti
Qubits 31	Status	
Region us-west-1	Next availab 10:14:38	le

嶇 CICC

Fujitsu and Hitachi's Digital Annealers

www.annealing-cloud.com Solution Statuar © Stat

E CICC

Key Takeaways

- NP-hard optimization problems could be the key driver for future computing growth
- A true coupling based integrated CMOS Ising computer was demonstrated in 65nm
 - Probabilistic exploration of various local minima
 - Mapped and solved 1,000 COPs in the chip with an accuracy of 82%-100%
- For oscillator based computing to be a viable approach however, there has to be a clear and significant power-performance-area advantage over
 - Mathematical optimizers (available today)
 - GPU, FPGA, Custom ASICs, digital annealers (available today)
 - Quantum computers

