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Abstract  
NP-hard combinatorial optimization problems (COPs) are very 
expensive to solve with traditional computers. COPs can be 
mapped to a coupled spin network where the ground state of 
the system is the solution. We propose a scalable truly coupled 
CMOS oscillator-based integrated system mimicking a spin 
network to solve COPs in hardware. Our simple latch-based 
coupling design finds solutions of max-cut problems with 
85%-100% accuracy 104-106 times faster than commercial 
software running on a CPU. Keywords: Annealing processor, 
Ising machine, oscillator-based computation, max-cut.  

Introduction 
Combinatorial optimization problems (COPs), such as Boolean 
satisfiability, traveling salesman, max-cut, are a class of NP-
hard problems that are intractable to solve using a traditional 
computer due to the extremely large search space. AI decision 
making, vehicle routing, VLSI layout optimization, network 
design, and many other modern applications can be modeled as 
COPs. A promising approach to solve COPs is mapping the 
problem to a network of spins [1] as shown in Fig. 1. The 
coupling dynamics minimizes the Ising Hamiltonian of the 
network and the final states of all spins is the solution. Previous 
implementations of spin networks require quantum devices 
operating at cryogenic temperatures [2], are based on digital 
logic without the coupling dynamics [3–4], or require special 
process [5-6]. We present a first-of-its-kind coupled ring 
oscillator (ROSC) based probabilistic compute engine for NP-
hard COPs. A latch-based coupling of 560 ROSCs can produce 
satisfactory solutions of difficult max-cut problems 104-106 
times faster than a commercial software running on a CPU. 

Proposed Ising Fabric Design 
Our proposed design has a 28×20 array of modular hexagonal 
unit cells representing the spin network, as shown in Fig. 2. We 
chose the hexagonal structure to maximize the number of 
neighbors per cell in 2D plane mimicking a spin-based system. 
We use nearest neighbor coupling where each cell is coupled 
with six of its neighbors. The coupled ROSCs oscillate in either 
the same-phase or opposite-phase with their neighbors. Hence, 
similar to the spin network, our system has two stable states.  
Fig. 3 shows the modular unit cell consisting ROSC, coupling 
and read blocks. Each ROSC can be synchronized with an on-
chip clock. We use twice the frequency of ROSCs for the clock 
to allow two stable phases. The measured frequency of ROSC 
was 118 MHz at nominal VDD and room temperature. The 
coupling block consists of three latches that couples to three 
neighbors. The other three coupling connections come from the 
neighbors. We use “negative” phase coupling to demonstrate 
the max-cut problem [1]. The ROSCs and the latches are 
designed with local and global enable signals. Hence, any cell 
can be programmed to couple with any of its neighbors and 
latches can be enabled using the global enable signal. The read 
block measures the relative phase with its neighbor.  
Fig. 4 shows when the coupling latches are turned ON, the 
ROSCs are frequency locked with stable phases after exploring 
various minima. The latches are turned OFF repeatedly using 
the global latch enable signal for annealing the chip.  

Probabilistic Exploration of Local Minima 
We measure and reprogram the chip 100 times using the same 
graph shown in Fig. 5a.  Fig. 5b shows the probability of a unit 
cell changing the state between iterations. Interestingly, Fig. 5c 
shows each iteration produces very similar results as max-cut 
can have multiple similar solutions. Hence, despite the 
solutions of different iterations are not the same, the quality of 
the result is surprisingly consistent. The distribution of 
Hamming distances between iterations, as shown in Fig. 5d, 
confirms the solutions are indeed widely different from each 
other, which proves the chip’s ability to converge to different 
local minima rather than finding deterministic solutions. The 
probabilistic nature of the chip and traversing through multiple 
local minima is a very crucial characteristic to solve COPs. 

Measured COP Results 
We map COPs with various levels of “difficulty” to the chip as 
shown in Fig. 6. We compare our results with a commercial 
COP software, LocalSolver, which is 104-106 times slower than 
our chip with roughly 4 orders of magnitude higher power 
consumption. The measured solutions for “easy” COPs have 
an accuracy between 98%-100%. Similarly, we mapped 
“difficult” COPs with various graph dimensions to the chip. 
For each dimension, we measured 150 problems. We compared 
the measured results with LocalSolver, as well as 1 million 
Monte-Carlo solutions sampled from the entire solution-space. 
The chip accuracy increases with annealing. We anneal the 
chip only three times to reduce delay. Fig. 7 shows the 
distribution of “difficult” max-cut results measured from the 
chip under nominal VDD and room temperature, and the 
sampled solutions normalized with software solution. The chip 
results are consistently better than the best solution from 
Monte-Carlo runs. For smaller graphs, such as 6×6, the chip 
finds cut values within 95% of LocalSolver. For larger graph, 
such as 26×18, the chip finds an average cut value within 86% 
of the software solution. A common heuristic finds max-cut 
solution within 88% of optimal result [7] indicating the chip 
solutions are satisfactory for practical applications.  
We compare prior works with our design in Fig. 8. The lack of 
details and accuracy statistics of previous proposals makes it 
difficult to fully compare various approaches. We measured 
1000 problems with various difficulty levels in this work. 
Additionally, compared to quantum computers, our design 
does not require a special process and can work at room 
temperature. Fig. 9 shows the chip photo and summary.  
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Fig. 2: (Left) Proposed 28×20 hexagonally coupled array. (Right) 
ROSCs have two stable states, 𝑠௜ = {0,1}. The Ising Hamiltonian 
depends on the states of ROSCs and the coupling weights 𝐽௜௝. 
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Combinatorial Optimization Problems (COPs): Application

 
Fig. 1. (Left) Applications of COPs include autonomous vehicle 
routing, communication network design, smart grid design, VLSI 
layout optimization. (Right) COPs can be solved by a network of 
coupled oscillators where the global minima is the solution [1-4]. 
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Fig. 5. a) A random graph is measured and reprogrammed 100 times. b) Unit cell state may flip between iterations, while the results remain 
similar as shown in c). d) Hamming distance of the solutions are different proving the chip is randomly exploring different minima. 
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Fig. 7. Normalized max-cut distributions for 150 “Difficult” COPs. 
Measured results are compared with 1 million randomly sampled 
solutions from whole solution-space for each specific graph. 
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Fig. 9. Die photo and summary of the 65nm test chip. 
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Fig. 8. Comparison with prior works with true coupling dynamics. 
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Fig. 3. Each modular cell consists of a ROSC, latch coupling block with 
global and local enabler, and read block to measure the neighboring cells. 
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Fig. 6. Example of various graphs mapped and solved using chip. 
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Fig. 4. Annealing: coupling is turned off for short period of time. 


