A 32Gb/s Digital-Intensive Single-Ended PAM-4 Transceiver for High-Speed Memory Interfaces Featuring a 2-Tap Time-Based Decision Feedback Equalizer and an In-Situ Channel-Loss Monitor

<u>Po-Wei Chiu</u> and Chris H. Kim

Dept. of ECE, University of Minnesota, Minneapolis, MN

Outline

- Introduction
- Time Based PAM-4 Decision Feedback Equalizer
- In-situ Channel Loss Monitor
- 65nm Test Chip Results
- Summary

Voltage-based vs. Time-based DFE

Memory Interface Trends

T. Hollis, Solid-State Magazine, 2019

- Single-ended signaling, lower supply voltage
- Data rate higher than 16 Gb/s
- Multi drop memory bus with more reflection

Time-based DFE becoming an attractive alternative

Pulse Amplitude Modulation (PAM)

 PAM-4 overtaking NRZ but requires more accurate conversion from voltage signal to time delay signal

Outline

Introduction

- Time Based PAM-4 Decision Feedback Equalizer
- In-situ Channel Loss Monitor
- 65nm Test Chip Results
- Summary

Differential Voltage to Time Converter

- Two path delays change with opposite polarity
- Non-linearity cancelled out by subtracting delays

Differential Voltage to Time Converter

Delay range improves from 42ps to 70ps

© 2020 IEEE International Solid-State Circuits Conference 22.4: 32Gb/s Digital-Intensive Single-Ended PAM-4 Transceiver for High-Speed Memory Interfaces Featuring a 2-Tap Time-Based Decision Feedback Equalizer and an In-Situ Channel-Loss Monitor

NRZ Signal Comparison

 Threshold delay generated by VTC in reference delay line

PAM-4 Signal Comparison

 Simple buffer can generate the different threshold delays for PAM-4. Separate DAC circuit not required.

PAM-4 Signal Comparison

 Simple buffer can generate the different threshold delays for PAM-4. Separate DAC circuit not required.

- Half-rate operation
- 12 delay lines and 6 phase detectors (PD)

Test Chip Diagram of PAM-4 Transceiver

- RX: DVTC, PAM-4 TB-DFE, and BER monitor
- TX: PRBS, clock generator, FFE, and driver
- In-situ channel loss monitors on both sides

Outline

- Introduction
- Time Based PAM-4 Decision Feedback Equalizer
- In-situ Channel Loss Monitor
- 65nm Test Chip Results
- Summary

Proposed Channel Loss Monitor

 Measure the toggling frequency of comparator output while sweeping reference voltage

Measured Frequency vs. Voltage

Frequency decreases at higher data rates

Measured Channel Loss

 Small discrepancy can be attributed to random digital pattern generated by PRBS (vs. sinusoidal input)

Outline

- Introduction
- Time Based PAM-4 Decision Feedback Equalizer
- In-situ Channel Loss Monitor
- 65nm Test Chip Results
- Summary

BER Bathtub and Time-Domain Eye Diagram

Die Photo and Feature Summary

Technology	65nm CMOS		
Circuit Area	TX: 31x72µm ²		
	RX: 89x73µm ²		
VDD	1.2V		
Data Rate	32 Gb/s		
Channel Loss	11.6dB@8GHz		
BER	<10 ⁻¹²		
Power Efficiency	0.97 pJ/b		

Performance Comparison Table

	JSSC'14 [1]	ISSCC'19 [2]	ISSCC'16 [3]	JSSC'18 [4]	This work
Signaling	Duobinary	PAM-3	Muti-Band	NRZ	PAM-4
Single/Differential	Single-Ended	Single-Ended	Differential	Single-Ended	Single-Ended
RX Circuit Type	Voltage-Based	Voltage-Based	Voltage-Based	Time-Based	Time-Based
RX Equalization	1-Tap DFE	1-Tap DFE	Self-Equalization	2-Tap DFE	2-Tap DFE
Data Rate	7 Gb/s	27 Gb/s	10 Gb/s	12.5 Gb/s	32 Gb/s
Technology	65nm	28nm	28nm	65nm	65nm
Voltage	1.05V	0.6V	1.2V	0.8V	1.2V
Channel Loss	0.8dB@3.5GHz	20mm	6dB@6GHz	14dB@6.25GHz	11.6dB@8GHz
BER	<1E-12	<1E-12	<1E-12	<1E-12	<1E-12
TRX Area	0.0333 mm ²	0.0135 mm ²	0.01 mm ²	0.0094 mm ²	0.009 mm ²
TRX Power Efficiency	0.56 pJ/b	1.03 pJ/b	0.95 pJ/b	0.49 pJ/b	0.97 pJ/b

[1] S. Lee, et al., JSSC, 2014. [2] H. Park, et al., JSSC, 2019. [3] W. Cho, et al., ISSCC, 2016. [4] I. Yi, et al., JSSC, 2018.

Summary

- Digital-intensive PAM-4 time-based DFE
- Differential voltage-to-time converter with enhanced linearity and dynamic range
- In-situ channel loss monitor