

[Invited] Characterization and Mitigation of EM Effects in Advanced Nodes

Chris H. Kim

Students: Nakul Pande, Yonghyeon Yi, Chen Zhou¹, Xiaofei Wang²

University of Minnesota

chriskim@umn.edu, chriskim.umn.edu

¹Now with Maxim Integrated, ²Now with Intel Collaborators: Cisco, TSMC, Mentor Graphics, and Intel

Electromigration In Interconnects

Abrupt failure

Progressive failure

A.S. Oates, et al., TDMR, 2009

- EM depends on current density, temperature, and mechanical stress
- Impact: IR drop in power grids, increased delay in signal wires

Power Grid EM Characterization Challenges

- High stress temperature (>300 $^{\circ}$ C) \rightarrow active load will be damaged
- Large amount of data required for statistical analysis \rightarrow long test time
- Too many sample points \rightarrow large # of IO pads

Prior Art: Power Grid EM Test Structure

- Total resistance of 3x2 50µm long test structure stressed at 325°C with constant current
- Key observations: Faster failure compared to singlelink, multiple resistance jumps, different growth rates

B. Li, IRPS 2018 (IBM)

Prior Art: Voltage Tapping Technique

F. Chen, IRPS 2015 (IBM)

Our Work: 9x9 Power Grid EM Test Structure

- M4-M3 "pseudo" power grid with three pad connections(A,B,C)
- Voltage tapping through top and bottom vias
- Strong connection to IO pads using multiple vias and wide wires

C. Zhou, C. Kim, VLSI Technology Symposium 2018, TDMR 2020

65nm EM Test Chip Diagram

- IO device based transmission gates used for voltage monitoring
- Circuits >400µm away from heaters to protect from high temp.

On-chip Heater Temperature Coefficient of Resistance (TCR)

- Poly resistor based on-chip heaters enables (1) fast and accurate temperature control and (2) on-chip control circuits
- Three heater stripes for individual temperature control
- Excellent linearity thanks to four terminal Kelvin measurements

Die Photo and Test Setup

- Temperature control setup
 - Measure heater temperature coefficient of resistance (TCR) before EM test
 - Ambient temperature set to 0 °C to keep control circuits cool during test

Voltage Drop Map of Fresh Chip

- 162 node voltage samples \rightarrow voltage drop across entire power grid
- For a fresh grid, the size of the arrow and marker represents the current density (with the exception of nodes near V(+) and V(-))
- Current density highest near IO pad connection points A, B, C

Total Power Grid Resistance and Voltage Drop Traces

- Stress mode: constant current mode \rightarrow constant voltage mode
- Due to voltage compliance limit of source meter

Failure Modes and Healing

- Both abrupt and progressive failures observed
- Temporary healing observed
 - Electrical stress (forward)
 - Mechanical stress (backward)
- Voltage jumps are due to either EM in the wire itself (large jumps) or increased current due to EM in neighboring wires/vias (small jumps)

EM Failure Location Analysis

- Branch with largest voltage shift likely to be failure location
- Resistance shift not instantaneous (i.e. gradually changes over several minutes \rightarrow longer timescale under nominal condition)

First EM Failure Location

- Three current stress modes applied to multiple chips
- First failure located near negative voltage terminal due to EM tensile stress

EM Failure Rates

- Constant current stress: failure rate increased rapidly due to increasing current density in alternative paths
- Constant voltage stress: failure rate decreases due to decreasing total current

Part 1 Summary

- Voltage tapping technique used to track EM induced voltage drop inside a "pseudo" 9x9 power grid
- Early failures occur near the negative voltage terminal
- Failure rate rapidly increases after the first few failures due to higher current density in alternative paths
- Healing was easily observed which may be due to redundant current paths of power grid
- Data useful for calibrating EM models and prediction tools

16nm Test Vehicle For EM Characterization

- Wide feeders to minimize IR drop
- Folded to maximize area utilization
- Parallel stress capability
- 4 terminal Kelvin sensing
- IO device switches to minimize leakage

16nm Die Photo and On-Chip Heater Design

- Snake shaped metal heaters
- 4-wire sensing to accurately track temperature in heating area

N. Pande, et al., IEDM 2019

Failure Types In This Work

M3 DUT (50µm, M2 Feeder)

Abrupt vs. Progressive EM Distributions

Part 2 Summary

- Array-based EM test vehicle featuring on-chip heaters, parallel stress and Kelvin sensing capabilities demonstrated in 16nm FinFET
- EM trends analyzed for various wire structures
 - Abrupt failures in M3 DUTs, progressive failures in M5 DUTs
 - Wire width affects abrupt failure lifetime (possible bamboo effect in narrow wires)