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Spin Transfer Torque MRAM Basics

• Magnetic Tunnel Junction (MTJ) is the storage element of STT-MRAM
• Thermal stability factor (Δ) determines the retention time while anisotropy field (HK) determines 

the energetic preference of the magnetization vector
• Key features: Low operating voltage, good CMOS compatibility, high speed, high density (<20F2), 

zero static power, and high endurance. 
• Applications: non-volatile memory (eflash replacement in 22nm), cache (SRAM replacement)
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DTCO for STT-MRAM

• Initial set of compact models and design rules for a preliminary standard cell 
library and entire optimization loop is repeated to obtain a satisfactory set of 
the device and design rule parameters

• MTJ compact model is a critical component of the overall MRAM DTCO flow.
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MTJ SPICE Model

• Landau-Lifshitz-Gilbert (LLG) 
equation solved using SPICE

• The MTJ SPICE models are 
available at mtj.umn.edu.
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MTJ SPICE Model Verification

• Model parameters can be tuned to match experimental data. 
• Variability effects of both the MTJ (W, L, tF, RA) and CMOS (W, L, Vth, Tox) can be incorporated
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Simulated Write and Read Delay Distributions

• Includes realistic variation 
for both MTJ (i.e. W, L, tF, 
RA) and CMOS (i.e. 
transistor W, L, Vth, tox) 

• Top: Write delay 
distribution is narrower for 
a higher write voltage due 
to faster switching.

• Bottom: TMR ratio 
(=(RAP−RP)/RP) impact on 
read sensing margin. 
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Incorporating Stochastic Switching Behavior

• Thermal fluctuation causes switching time to 
vary each write operation

• Can be incorporated into the model using the 
initial angle parameter (e.g. Monte Carlo) and 
time-varying thermal field
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“Dennard” Style Scaling Study for STT-MRAM Caches

• First order scaling analysis based on MTJ macromodels
• Δ for a target retention time is set by adjusting free layer thickness and MTJ anisotropy. 
• STT-MRAM’s scalability based on a constant JC0•RA/VDD scaling scenario
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“Dennard” Style Scaling Study for STT-MRAM 
Caches

• Left: Sub-array architecture of STT-MRAM cache (~3 times smaller than 6T-SRAM cache)
• Right: simulation setup includes process variation in the memory cells and SA circuit as well 

as variation of wire resistances, capacitances, reference biases, and supply levels 
11

Column & BL-S/A

64kb 
STT-MRAM
256cells/WL
256cells/BL

W
L 

D
ec

od
er

  

C
ha

rg
e 

pu
m

p 
&

 D
ec

ap

W
L 

D
ec

od
er

  
C

TR
L

Localized write driver at 
every 64 bits [13]

D
um

m
y cell averaging and 

disturb-free reference [16]

34
9μ

m

189μm
* Mismatches are based on inverse square root relationship of devices' areas.
* Based on historic data, we assume σVt/F is constant with tech. scaling
* µ(CBL) is assumed to be scaled proportional to scaling factor.

-10% to account for supply noisePower supply noise

Device mismatchesBit-cell

σ/µ=5%: each µ are calculated based on sub-array sizeParasitic capacitance (CBL)

Resistance area product σ/µ=5%

Sense Amplifier (S/A)
I-applying and V-sensing method (AP direction read) + 

Voltage S/A
: IREF σ/µ=2.5%, S/A pair mismatches 

Reference cell Reference cell averaging scheme with MTJ replica cells

Write threshold current σ/µ=5%

K. Chun, et al., JSSC 2013 

Device/material 
parameters, 
design rules

MTJ, CMOS 
models

MRAM 
circuit design 

(layout, read/write)

Monte Carlo, 
Evaluate PPA



6σ BL Sensing and Write Delay Trends

• Sensing delay decreases with scaling, and with a higher TMR ratio 
• Write delay becomes worse due to the lower drive current (in planar CMOS).
• The trends follow basic circuit intuition (i.e. read and write always have a conflict)
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Write Verify Scheme

• MRAM cell is repetitively written until correct value is verified  significant write error 
rate reduction at the expense of high write energy and long write time

• More suitable for NVM applications than cache memory
• Write driver has programmable write strength
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Array with Shared SL Voltage

• Common source line for compared area and reduced parasitic resistance
‒ Improves read and write margins with a modest layout area overhead. 
‒ Inhibit voltage is applied on the unselected BL
‒ Negative voltage applied to unselected WLs to suppress the BL leakage current 

15

CSL0

. .
 .

. .
 .

BL0 BL1

. .
 .

WL0

WL511

WL1

CSL3

. .
 .

. .
 .

BL6 BL7

. . .

Selected cell Unselected cell

Y.-D. Chih, et al., ISSCC 2020 (TSMC 22nm), C. Kim, et al., ISSCC 2015 (Samsung)



Readout Circuit
• Clamp transistor trimming circuit

‒ Clamps BL voltage to prevent read disturbance
‒ Trimming circuit to remove offset

• 1T4MTJ reference cell provides a stable 
(RP+RAP)/2 reference value without causing 
read disturbance 

• Half-VDD detection circuit improves the 
sensing margin by extending the signal 
development time 
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Conclusions
• This invited paper covers various aspects of MRAM DTCO including 

device, circuit, and architecture considerations. 
‒ SPICE MTJ device model
‒ Array level STT-MRAM PPA evaluation
‒ Scalability and variability studies
‒ Novel MRAM read/write circuit, array, and bit-cell layout design 

techniques can improve the yield of the large arrays and must be 
accounted for in DTCO flow
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