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Abstract— As neural networks continue to infiltrate diverse
application domains, computing will begin to move out of the
cloud and onto edge devices necessitating fast, reliable, and low-
power (LP) solutions. To meet these requirements, we propose
a time-domain core using one-shot delay measurements and a
lightweight post-processing technique, dynamic threshold error
correction (DTEC). This design differs from traditional digital
implementations in that it uses the delay accumulated through
a simple inverter chain distributed through an SRAM array
to intrinsically compute resource intensive multiply-accumulate
(MAC) operations. Implemented in 65-nm LP CMOS, we achieve
an energy efficiency of 104.8 TOp/s/W at 0.7-V with 3b resolution
for 19.1 fJ/MAC.

Index Terms— Machine learning (ML), neuromorphic comput-
ing, time-domain computing, time-to-digital converter (TDC).

I. INTRODUCTION

HE ever-increasing demand for higher performance and

energy efficiency in machine learning (ML) applications
has driven an impressive range of application-specified inte-
grated circuits (ASICs) [1]-[8], [11]-[13] aimed at meeting
the challenge. Digital SoCs [3]-[5], [7] have found success
by restricting the weight resolution [8], changing memory
access structures [4], and guarding operations when the input
is zero [3]. However, all require large registers to store
intermediate results and complex multiplier blocks.

SRAM memory-based current summation designs have
been proposed as well [9], [10]. In [9], SRAMs are used
to store weights. Interspersed in the array are local analog
moving average blocks, the control unit that implements the
charge sharing across bitlines. This design makes use of low-
power (LP) analog techniques to drive down power but relies
on charge sharing and utilizes a time-dependent pre-charge
scheme to implement the input. These two techniques limit the
scalability of the design and as such they are limited to convo-
lutional operations that have reduced input lengths due to the

Manuscript received January 14, 2019; revised March 11, 2019 and April 25,
2019; accepted April 29, 2019. This paper was approved by Guest Editor
Chen-Hao Chang. This work was supported in part by the National Science
Foundation under Award CCF-1763761 and in part by IGERT under Grant
DGE-1069104. (Corresponding author: Chris H. Kim.)

The authors are with the Electrical and Computer Engineering
Department, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
evers193@umn.edu; chriskim@umn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2019.2914361

filter size. As a result of using charge sharing, the SRAMs can-
not be directly connected together which is why 10T bitcells
are utilized instead of the conventional, denser 6T bitcells.
Reference [10] also leverages charge sharing between SRAMSs
in order to implement signed multiplication. They demonstrate
that using in-memory computing can reduce power consump-
tion by as much as 4.5x. However, when used as an analog
device, process variation from SRAMSs necessitates on-chip
learning. Models learned on one chip and applied to another
can cause a 43% drop in accuracy. This requires a massive
increase in overhead, reducing the efficiency of the core.

One of the key limitations of using SRAMs is the volatile
storage. This requires the power supply to be connected
constantly drawing static leakage power. If it is disconnected,
an overhead will be incurred to reprogram the array to prepare
the array for computation. Nonvolatile storage devices such
as ReRAM [11] and eFlash [12] present opportunities to have
persistent weight storage. The arrays work much in the same
manner as SRAM crossbar arrays where the accessed bitline
currents are summated to implement the multiply-accumulate
(MAC). ReRAM is considered an ideal candidate due to not
only the low access latency and energy but also the small
footprint could enable very dense arrays. ReRAM can be
thought of as a programmable, analog, and nonvolatile resistor.
However, due to the nonuniform analog resistance states,
[11] asserts that it can cause errors in the convolution. They
work around this by using ReRAM as a digital device that
has benefits including: better programming accuracy, binary
voltages applied to wordline (WL) is scalable due to lower IR-
drop in large arrays, and it does not require a large ON/OFF-
resistance ratio previously required in analog ReRAM [11].
The key limitation is the lack of a capable commercially
available process and even [11] does not have the measurement
results to support their claims. eFlash arrays utilize multi-
level storage element and are logic compatible to reduce cost
and available in all processes [12]. The main drawback is
the large cell size due to the I/O devices required to limit
gate leakage on the storage node, on the order of 4x larger
than an SRAM even accounting for the eFlash multi-level cell
storage.

An emerging trend [1], [2] has been to employ time-
domain circuits to implement dot-products, the main kernel for
ML applications. Fig. 1 details how dot-products are com-
puted in the time domain and in conventional digital imple-
mentations. In time domain, the delay is modulated by the
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Time-based neurons utilize the delay through basic circuit elements such as inverters to implement the dot product. Digital neurons use conventional

Boolean logic for arithmetic operations. Both architectures can be mapped to deep learning applications.

application inputs and weights to generate proportional delays.
These delays are accumulated and can be routed to a time-
to-digital converter (TDC) or counter to be processed for
use in the deep learning application. Alternatively, the digital
approach relies on many multiplier blocks and wide merging
adders, typically in an arraylike structure, to generate dot-
products. The primary benefit of time-domain circuits is that
the accumulate portion of the MAC is intrinsic to the archi-
tecture. Furthermore, the processing unit can be realized as
a collection of inverters making the area and active power
consumption very low. Digital methods can leverage existing
IP-blocks for multipliers and adders and do not require cal-
ibration, unlike the time-domain circuits. In addition, digital
circuits can handle higher bit operations more effectively due
to the binary encoding.

Previous time-domain neuromorphic chips have several lim-
itations. In [2], a digitally controlled oscillator was used to
modulate the frequency, by switching capacitor loads rep-
resenting the weights, while the number of cycles in a set
sampling period was counted. While this closed-loop structure
has the benefit of canceling temporal noise, it must oscillate
for many cycles to generate a reliable result. Reference [1]
is also a delay line-based approach, but the outputs and
weights are restricted to binary. More critically, their design
has twice the area overhead due to the fact that they utilize
local reference delay lines instead of a global reference and can
limit the potential scalability of the architecture. In this paper,
we have addressed the shortcomings of the previous designs
by implementing digitally controlled delay lines (DDLs) that
are compared to a shared reference delay to compute multi-
bit MACs.

This paper is organized as follows. Section II provides a
detailed narrative on-chip implementation, the one-shot and
how to apply time-based circuits to neuromorphic computing.
The performance of the implemented two-bit TDC is ana-
lyzed in Section III. A novel accuracy boosting technique,
dynamic threshold error correction (DTEC), is explained in
Section IV. Measurement results from the chip and the per-
formance on the target application are discussed in Section V.

Finally, conclusions are framed in Section VI. The conference
version of this paper was published in [13].

II. ONE-SHOT AND TIME-BASED
NEUROMORPHIC CONCEPT

Conventionally, Boolean computations are used to realize
arithmetic operations in hardware. However, time-domain cir-
cuits can also be used at an advantage of lower area and
power per processing unit and reduced design complexity.
The kernel of all ML algorithms can be distilled into a dot-
product; y = > xw + b, where x is an input vector, w a
weight matrix, and b is a bias, or offset vector. Our high-level
architecture is shown in Fig. 2. An input pulse is presented
on the left side of the core and the delay of each stage is
modulated based on the application inputs. We describe it as
one-shot because each pulse gets evaluated once. Each stage
has eight delay units (DUs) with output taps which the pulse
travels through as shown in Fig. 3. The number of DU enabled
depends on the one-hot encoded weight, w, stored locally in
SRAM cells, and the input pixel, x, which is applied across
the array on the bitlines, BL. Each DU has two inverters to
retain consistent polarity between stages. This is critical in
the event that the rising and falling propagation delays are
not matched, as well as ensuring correct polarity at the TDC.
The output tap is realized as a complex tristate gate and the
functionality is described in Fig. 4. The first column shows
the circuit schematic and corresponding connections between
different DUs. The right four columns show the activated
paths, shown with black lines, depending on the values of
the input, x, and weight, w. DUs is the nominal stage delay
and is activated through the right branch of the circuit when
the input bit is off, representing “zero delay.” The right table
shows the mapping between the algorithm-trained weights
and the delays realized in the chip at each stage. When the
input, x, is present, the left branch is enabled in the DU
corresponding the weight bit of the stage. Larger positive
weights map to shorter delays relative to the reference DDL,
and conversely negative weights correspond to longer delays.
The accumulation in the MAC is achieved naturally as the
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Fig. 3. Schematic of pixel stage (top). Complex tristates shown in Fig. 4 drive
output bus. Layout of pixel stage (bottom).

pulse passes sequentially through the DDL, stage by stage. The
layout of each DU in the stage is pitch matched to a 6T SRAM
so the layout is regular, compact, and scalable. The bias vector
is applied in the same way for the last eight units. In addition,
it can be used to tune process variation, so that during
evaluation, those pixels are always activated. Fig. 5 shows
the relationship between the time-domain computation in the
chip and the expected arithmetic output. The phase detector
(PD) output maps roughly to the rectified linear unit (ReL.U)
transfer function. When the reference pulse beats the neuron
rising edge, all four thermometer bits are zero, regardless of
the magnitude. The transfer function between the four bits is
linear and then clips, or saturates, once the neuron pulse is
faster than all the offsets.

III. TDC PERFORMANCE ANALYSIS

The delay of the time-based circuits can be tuned to cancel
out inter-DDL process variation. Measured one-time calibra-
tion results are shown in Fig. 6. Calibration was performed by

Top-level schematic of the time-based neuromorphic core. Layout is based on SRAM array. The core contains 64 DDLs each with 129 stages and
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Fig. 4. Complex tristate connections used to implement dot product based

on input and weights (left). 3b weight-delay mapping (right).

evaluating each DDL and measuring the DDL PD output. After
each evaluation, the reference DDL bias bits (eight tuning in
top DDL shown in Fig. 2) of the reference was increased and
the process repeated. At each bias point, ten additional eval-
uations were run due to quantify trial-to-trial temporal noise,
seen as the slope between TDC levels. No other measurements
are averaged in the following discussion. The reference bias
point at which the PD of each DDL trips is applied to the
tuning bits of the respective bias to align all DDLs, thus,
compensating process variation. The average of the tentrials is
plotted in Fig. 6. The inter-DDL spread before calibration is
approximately 21 reference bias steps, or tuning steps. After
calibration, the spread was reduced to less than three tuning
steps. The curves are mostly monotonically decreasing which
is expected even though there is meta-stability when the phase
of the output and reference DDLs is nearly matched. This
supports the effectiveness of the proposed time-based MAC
methodology.
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Reference DDL Bias Steps

Fig. 6. Measured results from chip calibration. Ten DDL outputs are plotted
for a tuning curve before (top) and after (bottom) calibration. Each data point
is an average of ten evaluations.

Fig. 7 shows the simulated average unit delay as a function
of the weight in each unit. In this simulation, the extracted
layout of a four-stage DDL was used to measure the delay of
a single weight change. Each stage has the weight programmed
from [—3, 4], corresponding to the x-axis, and the number of
active stages is swept from none to all four, corresponding
to different series. This confirms that there are no systematic
biases between different weights.

Using both measured and simulated tuning curves, it is
possible to quantify the TDC performance [14]. It should be
noted that while the TDC performance is important, the trade-
offs between area, power, and application performance are
paramount. For each bit of the increased TDC resolution,
the area and power double. This incentivizes the designer
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be measured, which in this case would be 12 tuning bits.
The gain error describes the difference in the last output
code to the expected result based on the gain, quantified as
Egain = (1/TisB)(Ti111 — Tooo1) — (2 —2) [14]. In this paper,
we will estimate 71 sg = 12 tuning bits based on the calibrated
tuning curve, thus Eg,in = —(1/4). Returning to the TDC gain,
we can now use the gain error to accurately estimate the actual
gain error as ktpc = (1/TLsB)(1 — (Egain/MNevels — 2)) =
(3/32). This is 12.5% steeper than the ideal gain due to the
reduced phase window at output code 0001. This could be due
in part to the reduced load seen after the third reference buffer
and rectified in the future work by adding a dummy load to
better match the delays of each branch of the TDC.

The previous paragraph studied the performance metrics that
affect the linear performance. Next, we will attempt to quantify
the nonlinear performance due to process variation and noise.
The total delay can be described as t, = nT + Z;’zl &,
where ¢; is the delay error caused by process variation at
stage i. In Table I, u is equivalent to the nT term, where
n is the chain length and T'is the DU delay. If all the DUs are
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TABLE I
DDL DELAY TABLE

PEX 65nm, 1.2V, 25C

tran
Chain
Length K o ol
4 2.25n 34.6p [0.0154
16 9.24n 68.3p [0.0074
128 72.92n 194.6p | 0.0027
trise
Chain
Length H g olu
4 2.25n 37.4p |0.0167
16 9.24n 67.1p |0.0073
128 73.00n | 200.5p [0.0027

*Estimated via square root law [11]

independent but derived from the same distribution, the stan-
dard deviation of the total time is o (t;) = o(g)/n. This
is supported by Table I, where the chains of lengths 4 and
16 were simulated after parasitic extraction for 100 Monte
Carlo samples. The distribution of the delays was normally
distributed and the standard deviation follows the square root
law. Chain lengths of 128 were estimated by the square root
law. This has two consequences; the first being a shorter delay
chain will have less variation. This is better; however, it has
lower efficacy because there are fewer elements that can be
multiplied at once reducing the throughput and increasing
power. The second consequence is that the rate of increase
decreases as more stages are added to the delay chain. This
means that an increase of 8 x stages only results in an increase
of 2.8 x in the standard deviation. In Fig. 7, it is estimated that
the tuning step delay is 10.5 ps, which makes the standard
deviation equal to roughly 18.5 tuning steps or 1.53 output
codes. This could be reduced by increasing the transistor
size, W, to reduce the Johnson—Nyquist noise, where in satu-
ration, the power spectral density of the drain current is S; =
4kT (2/3)(W/L)uCox(Vgs — Vr) [15]. Reducing noise comes
at a cost of higher power consumption. As voltage increases,
it can be seen that the current will increase. These shifts
would be seen at the global level since all DDLs share the
same voltage supply. It is possible that local variations in the
power supply grid could cause deviations in the current which
would negatively impact functionality. In addition, increasing
temperature will decrease the current. However, the likelihood
of a significant temperature gradient across our small, dense
array would be unlikely. If there was a global temperature
shift, it would affect all DDLs together. Another method could
utilize a closed-loop ring oscillator that integrates the noise
over multiple cycles which reduces the total error at a cost of
lower throughput and higher power per prediction [2]. With
these tradeoffs identified, the proposed circuit strikes a balance
between performance and a lightweight solution.

IV. DYNAMIC THRESHOLD ERROR CORRECTION

In this design, we opt for a 2-bit TDC due to the optimal
tradeoff between small area and LP, and strong architecture
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Fig. 8. DTEC concept. Reference DDL bias is increased to elucidate the
strongest DDL. The number of steps can be limited based on power and speed
requirements.
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Fig. 9. Colormaps (left) show the outputs from core after DTEC. Each
row corresponds to an evaluation from incremented values of the bias. The
red rectangle highlights where DTEC has identified the dominant output. Bar
plots (right) show the expected results from software.

performance. In networks with “winner-take-all” topologies,
such as the last stage of classification networks, ambiguous
predictions can occur. Unclear outputs in this paper can stem
from limited resolution between PD trip-points or activity out-
side of the range of the PD. To mitigate this issue, we propose
a DTEC technique that increases the effectiveness of the 2-bit
TDC. As shown in Fig. 8, when two or more DDLs have
the same output, DTEC works by increasing the threshold
bias delay which moves the trip point of the PDs. DTEC
is dynamic due to the fact that the bias sweep would be
terminated after the third evaluation, when the dominant DDL
was identified from the PDs. In addition, DTEC can be stopped
after a fixed number of steps if no dominant DDL emerges to
conserve power. In Fig. 9, the top row of colormaps shows
the ambiguous predictions from the core, while successive
rows show the output as DTEC is applied. Red rectan-
gles highlight where DTEC has successfully identified the
target.

Fig. 10 plots the distributions of the outputs from the
intermediate layers in a two-layer dense neural network with
30 hidden units and 10 output units for all 10000 test images
in the MNIST benchmark [16]. The left column corresponds
to the output with full precision weights and the right column
corresponds to our rounded 3-bit weights. The first row shows
the network model used for the analysis. The second row
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right column have three-bit weights (left column). Curves are smoothed to simplify analysis.

displays the distribution of the MAC output of all 30 hidden
units after the ReLU transfer function. The third row shows
the winner take all (WTA) output of network, but each curve
plots the sorted output instead of each unit (i.e., the correct
outputs for the ten cases are grouped to one unit). The
x-axis scales are not normalized to a unit weight. In the
3b precision network, the full precision weights have been
scaled up to match the DU range (i.e., [—3, 4]). These curves
support the assumption that a 2-bit TDC can cover the entire
output range because according to Fig. 6, the width of the
PD is 40 units on the x-axis. The hidden layer output would
be contained inside that range. In the hidden layer, the results
are approximately zero-centered prior to the ReLU activation
but have a large range. Units in neural networks must have
zero-centered activations, otherwise the predictions would be
biased resulting in reduced learning capacity. If the TDC had
a unit step of 1 tuning bit (equal to 1 step of the x-axis), this
would require at least a 6-bit TDC for each DDL. The area
overhead would render this solution infeasible. In addition,
due to the effectiveness of the training, the correct prediction
output histogram has very little overlap with the remaining
predictions. We are able to leverage this outcome because
in the majority of the cases, a high precision TDC will not
provide additional information when the only relevant outcome
is which unit has the highest activation. Another observation is
that full precision and fixed point traces match closely. There is
a modest amount of spread between the fixed and full precision
hidden layer outputs. Nearly, all hardware implementations

= Simulation
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2 Layer
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1b Weights
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Fig. 11. Results on 11 x 11 MNIST for 3b two layer, 3b single layer, and
1b [8] single layer.

utilize fixed-point weights and this is an acceptable transform
as the curves match.

Analysis of results from the 3b single-layer application
(Section V) shows that by applying just two DTEC steps
81.64% of the correctible errors are recovered. This comes
at a cost of just 41% additional evaluations per image. After
the one-shot evaluation, 73% of all images have a dominant
output. The remaining 2668 images begin DTEC. After the
first step 46% are resolved and 37% after the second step
leaving less than 1000 images ambiguous. Thus, 4108 DTEC
evaluations improves the total accuracy from 69.16% to
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TABLE II
COMPARISON TABLE
This Work A-sscc16 [1]] cicc17[2] | 1sscc7 [3]] ISScc'17 [4] [ISSCC'16 [5]]ISSCC'16[6]] Science'14[7]
Chip Architecture Time-Based Time-Based | Time-Based Digital Digital Digital Sw. Cap Digital
Algorithm Target FCDNN & CNN FCDNN & CNN [FCDNN & CNN[FCDNN & CNN[FCDNN & FFT| _ CNN___|CNN & SGD|FCDNN & CNN
Technology [nm] 65 65 65 28 FDSOI 40 65 40 28
Chip Area [mm?] 0.644 3.61 0.24 1.87 74 12.25 0.012 430
Precision* [b] [B,T,2,3] B 3 [4-16] [6-32] 16 3 [B.T]
On-Chip SRAM [kB] 8.06 20 3 144 270 181.5 [ 256MB
VDD [V] 1.2 (Nom.) | 0.7 (Eyas) 1 1.2 0.6 0.65 0.82 1 0.85
Frequency [MHz] 1700 285 23041 792 200 19.3 250 1000 0.001
Energy Efficiency** [TSop/s/W] 36.2 52.4 48.2 2.47 5.0 0.19 18 3.86 0.04
Hardware Efficiency [GE/PE][1] 38.4 76.5 33.2 7456 18269 50637 288 6.5
*B=Binary, T=Ternary **Synaptic Op=MAC
82.14%. If three DTEC steps are applied, 88.8% of errors 80 4
can be recovered at an overhead of 51%, demonstrating 70 l * 35m
the dynamic scalability of the technique. Hardware results . T —
show that DTEC is an economical and scalable approach to — 60 + 3 2
el
significantly improve application performance. E. 50 3 250"
- o
V. TEST CHIP MEASUREMENT 5 40 ] Py 2 o
—
AND APPLICATION DETAILS 3 30 15 %
o K 2 " E
We evaluate the core on the MNIST benchmark [16]. % 20 S 1 8
Fig. 11 shows the comparison of classification accuracy on an * n ]
11 x 11 image for single- and two-layer networks between 10 Py T T [ 0.5
expected simulated software results, one-shot evaluation, 0 0
and DTEC. To reduce the 28 x 28 grayscale images to 0.6 0.8 1 1.2 1.4
1‘1 x 11 b1’nary images, 3‘ plxels‘a‘re sliced frorp all four Supply Voltage, [V]
sides of the image. Then, a fixed resizing command is applied,
and ﬁnally, the pixels are binary thresholded. Fig. 12 shows  Fig. 13. Power consumption of a DDL and delay/stage versus VDD.

how the core can be used in a multi-layer deep neural net
application. Each bit of the thermometer code is expanded
as the input in the next layer. The input is divided into
four segments, and the weight matrix is copied four times
(L20-L23), which gives each bit equal weighting. In the
example shown in Fig. 12, 30 neurons in layer 1 yield
a 120-bit input to layer 2.

By applying DTEC, the ambiguous results are almost com-
pletely recovered and the slight loss in accuracy is due to out-
put differences smaller than a single tuning bit. Fig. 13 shows
the tradeoff between power consumption and nominal stage

delay for various supply voltages. Power is kept exceptionally
low because rarely are more than two stages switching at a
time in a DDL. A wide operating voltage range is enabled
due to the all-digital time-based design choices. If the design
incorporated pipelining, it could achieve even greater through-
put. That is, multiple pulses could be pushed into the DDL
and the input could shift as well. This is ideally suited for
convolutional nets where a weight filter slides across an image.
In this case, the image could slide across the weights while
input pulses are applied to the DDL. Die photograph and
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- Process 65nm LP CMOS
” Core Area 0.644mm’

- VDD 0.7-1.4V

: # of Neurons 64

= | # of Synapses 8256 (8K)

e Throughput |1.7Gpixels/s/DDL
- Power 47.1uW/DLL
: Energy/SOP 27.6fJ

.

Y

Fig. 14. Die photograph and chip summary with reported metrics at 1.2-V.

design specs are highlighted in Fig. 14. Table II shows the
competitive performance compared with state of the art. All
comparisons are made at the highest reported energy efficiency
operating point. In our work, we report 1 SOP as a 1b input x
3b weight MAC without DTEC. Compared to [1] and [17], our
energy efficiency would be 3x higher than reported. In addi-
tion, Moons et al. [3] reported the peak energy efficiency
at 4b with 30%—60% sparsity which they claim is present in
the convolutional neural networks. We report very economical
energy efficiency although we have tuned the supply voltage
to show 8.7% improvement, and modest gate equivalent count
for each processing unit coming in at half the size of [1]. The
gate efficiency compared is similar compared to [2]. This is
interesting because the capacitive weights and binary encoded
weights stored in local SRAMs are only slightly smaller
than one hot encoded SRAMs, linearly unrolled inverters,
and tristate output gates. One hot is less compact but does
not require decoding, which causes overhead to control the
capacitive connections in [2]. Our chip is scalable in voltage,
weight resolution, and is versatile in that it is able to tackle
fully connected deep networks as well as convolutional nets.

VI. CONCLUSION

We described a time-based neuromorphic core based on
one-shot DDLs in 65-nm LP CMOS and proposed an error
recovery technique, DTEC. It uses inverter delays to com-
pute the dot-product kernel, making it ideally suited for
ML applications. The proposed core is validated on the
MNIST data set and achieves near simulated prediction accu-
racy on single- and multi-layer networks after applying our
error correction technique, DTEC. The maximum energy effi-
ciency of 54.2TSOPs/s/W with 3b resolution at 0.7-V makes
the proposed architecture attractive for edge devices.
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