# A 40×40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

# Luke R. Everson, Sachin S. Sapatnekar, Chris H. Kim University of Minnesota, Minneapolis, MN

© 2019 IEEE **International Solid-State Circuits Conference** 



# - Vertex Details - Edge Details Applications Conclusion

© 2019 IEEE **International Solid-State Circuits Conference** 

# Outline

- Background: Path Planning Algorithms Time-Based A\* ASIC
  - Time-Based Primer
  - Top Level Design
- 65nm Test Chip Results





# • Formal definition:

© 2019 IEEE **International Solid-State Circuits Conference** 



- Graph: set of "objects" and their "connections"
  - $-G = (V, E), V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
  - V: set of vertices (nodes), E: set of edges (links, arcs)
  - Directed graph:  $e_k = (v_i, v_i)$
  - Undirected graph:  $e_k = \{v_i, v_i\}$
  - Weighted graph: w:  $E \rightarrow R$ , w(e<sub>k</sub>) is the "weight" of e<sub>k</sub>.

## **Network Analysis**



## [Wikipedia.org]

© 2019 IEEE International Solid-State Circuits Conference

# Why Graphs? **Routing/Path Planning**

## [yuchsia.github.io]

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control



## Self-Driving Cars



## [techrepublic.com]

4 of 62

# **Graph Algorithms- Breadth First Search** • Explores search area equally in all directions Adds new neighbors to queue and visits in order added Simple to implement in software







# **Graph Algorithms- Breadth First Search** Explore entire graph from Source (S) • **Visited** = {**S**} • Queue = {A,D}

© 2019 IEEE International Solid-State Circuits Conference







# **Graph Algorithms- Breadth First Search** Explore entire graph from Source (S) • Visited = {S,A} • **Queue = {D,B}**

© 2019 IEEE International Solid-State Circuits Conference







# **Graph Algorithms- Breadth First Search** Explore entire graph from Source (S) • Visited = {S,A,D} • **Queue = {B,E}**

© 2019 IEEE International Solid-State Circuits Conference





# **Graph Algorithms- Breadth First Search** Explore entire graph from Source (S) • Visited = {S,A,D,B} • **Queue = {E,C}**

© 2019 IEEE International Solid-State Circuits Conference







# **Graph Algorithms- Breadth First Search** Explore entire graph from Source (S) • Visited = {S,A,D,B,E} • **Queue = {C,T}**

© 2019 IEEE **International Solid-State Circuits Conference**  2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control







10 of 62

# **Graph Algorithms- Breadth First Search** Explore entire graph from Source (S) • Visited = {S,A,D,B,E,C} • Queue = $\{T\}$

© 2019 IEEE International Solid-State Circuits Conference





# **Graph Algorithms- Breadth First Search** Explore entire graph from Source (S) • Visited = {S,A,D,B,E,C,T} • **Queue** = {}

© 2019 IEEE **International Solid-State Circuits Conference** 







• Similar to BFS when edges have weights neighbor first Keeps track of

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- Dijkstra's Dijkstra's** BFS Uniform cost search

# Search "cheapest" distance FROM start



![](_page_12_Figure_8.jpeg)

![](_page_12_Figure_9.jpeg)

# Find shortest path from Source (S) to Target (T) • Visited= $\{S_n\}$ • Cost=0• **PriorityQueue=** $\{A_{s_1}, D_{s_1}\}$

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- Dijkstra's**

![](_page_13_Picture_5.jpeg)

## **Store Parent Node for** traceback

![](_page_13_Figure_8.jpeg)

# Find shortest path from Source (S) to Target (T) • Visited= $\{S_0, A_{S_1}\}$ • Cost=1 • **PriorityQueue=** $\{D_{S1}, B_{A2}\}$

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- Dijkstra's**

![](_page_14_Figure_5.jpeg)

# Find shortest path from Source (S) to Target (T) • Visited= $\{S_0, A_{S_1}, D_{S_1}\}$ • Cost=1 • **PriorityQueue=**{ $B_{A2}, E_{D4}$ }

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- Dijkstra's**

![](_page_15_Picture_5.jpeg)

# • Cost=2

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- Dijkstra's** Find shortest path from • **PriorityQueue=**{ $C_{B3}$ , $E_{D4}$ }

Source (S) to Target (T) • Visited= $\{S_0, A_{S_1}, D_{S_1}, B_{A_2}\}$ 

![](_page_16_Picture_7.jpeg)

# Find shortest path from Source (S) to Target (T) • Visited= $\{S_0, A_{S1}, D_{S1}, B_{A2}, B_{A2}, B_{A2}, B_{A2}, B_{A3}, B_{A$ C<sub>B3</sub> • Cost=3• **PriorityQueue=**{ $T_{C4}, E_{D4}$ }

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- Dijkstra's**

![](_page_17_Picture_5.jpeg)

# Find shortest path from Source (S) to Target (T) • Visited= $\{S_0, A_{S1}, D_{S1}, B_{A2}, B_{A2}, B_{A2}, B_{A2}, B_{A3}, B_{A$ **C**<sub>B3</sub>, **T**<sub>C4</sub>} • Cost=3• **PriorityQueue=** $\{E_{D_4}\}$

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- Dijkstra's**

![](_page_18_Picture_5.jpeg)

# destination • Cost(n) = F(n) + H(n)Actual Cost

© 2019 IEEE **International Solid-State Circuits Conference** 

# Graph Algorithms- A\*

- A\* guides the search towards the

  - F(n) = actual distance from source
    - H(n) = heuristic that predicts the distance to target
  - H(n) = 0 for Dijkstra's
- Provides optimal path if H(n) <=</li>

![](_page_19_Figure_10.jpeg)

![](_page_20_Figure_0.jpeg)

© 2019 IEEE International Solid-State Circuits Conference

![](_page_20_Figure_2.jpeg)

# • Let H(n) = ManhattanDistance • $H(n) = abs(x_i-x_T)+abs(y_i-y_T)$

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

21 of 62

Distance • Visited= $\{S_n\}$ • Cost/F(n)=0

© 2019 IEEE **International Solid-State Circuits Conference** 

# Graph Algorithms- A\* Find shortest path from Source (S) to Target (T)

- Let H(n) = Manhattan
- **PriorityQueue=** $\{A_{S_1}\}$

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

![](_page_21_Figure_7.jpeg)

to Target (T) Distance • Visited= $\{S_n\}$ • Cost/F(n)=0

© 2019 IEEE International Solid-State Circuits Conference

# Graph Algorithms- A\* Find path from Source (S) • Let H(n) = Manhattan • **PriorityQueue=** $\{A_{s_1}^5\}$ C(A) = F(A) + H(A) = 1 + 4

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

![](_page_22_Figure_5.jpeg)

Distance • Visited= $\{S_n\}$ • Cost/F(n)=0

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- A\*** Find shortest path from Source (S) to Target (T) • Let H(n) = Manhattan

# • **PriorityQueue=** $\{A_{S1}^{5}, D_{S1}^{5}\}$

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

![](_page_23_Figure_6.jpeg)

 Find shortest path from Source (S) to Target (T) Let H(n) = Manhattan Distance • Visited= $\{S_0, A_{S_1}^5\}$ • Cost/F(n)=1• **PriorityQueue=**{ $B_{\Delta 2}^{5}$ ,  $D_{S1}^{5}$ }

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- A\***

![](_page_24_Figure_5.jpeg)

 Find shortest path from Source (S) to Target (T) • Let H(n) = Manhattan Distance • Visited= $\{S_0, A_{S_1}, D_{S_1}, D_{S_1}, D_{S_1}, D_{S_1}\}$ • Cost/F(n)=1• **PriorityQueue=**{ $B_{A2}^{5}$ ,  $E_{D4}^{6}$ }

© 2019 IEEE **International Solid-State Circuits Conference** 

# Graph Algorithms- A\*

![](_page_25_Figure_4.jpeg)

 Find shortest path from Source (S) to Target (T) • Let H(n) = Manhattan Distance • Visited= $\{S_0, A_{S_1}^5, D_{S_1}^5, B_{A_2}^5\}$ • Cost/F(n)=2• **PriorityQueue=**{ $C_{B3}^{5}$ ,  $E_{D4}^{6}$ }

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- A\***

![](_page_26_Figure_4.jpeg)

 Find shortest path from Source (S) to Target (T) • Let H(n) = Manhattan Distance • Visited= $\{S_0, A_{S_1}^5, D_{S_1}^5, B_{A_2}^5, B_{A$  $C_{B3}^{5}$ • Cost/F(n)=3• **PriorityQueue=**{ $T_{C4}^4$ ,  $E_{D4}^6$ }

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- A\***

![](_page_27_Figure_5.jpeg)

 Find shortest path from Source (S) to Target (T) • Let H(n) = Manhattan Distance • Visited= $\{S_0, A_{S_1}, D_{S_1}, B_{A_2}, B_{$  $C_{B3}^{5}, T_{C4}^{4}$ • Cost/F(n)=3• **PriorityQueue=** $\{E_{D_4}^6\}$ 

© 2019 IEEE **International Solid-State Circuits Conference** 

# **Graph Algorithms- A\***

![](_page_28_Figure_4.jpeg)

![](_page_29_Picture_0.jpeg)

- 4-neighbor grid • Directed edges

  - on/off control
  - edge weight
  - runtime

# **Graph Structure- This Work**

# Each direction binary 4 bit digital control Programmable at

![](_page_30_Picture_10.jpeg)

# Outline • Background: Path Planning Algorithms Time-Based A\* ASIC **– Time-Based Primer** - Top Level Design - Vertex Details - Edge Details 65nm Test Chip Results Applications Conclusion

© 2019 IEEE **International Solid-State Circuits Conference** 

![](_page_32_Figure_1.jpeg)

© 2019 IEEE **International Solid-State Circuits Conference** 

## **Digital Computing**

Advantages of digital arithmetic: – Binary representation – Less "buy-in" required – Existing IP for rapid SoC development – No calibration

## **Time-based Computing**

![](_page_32_Figure_8.jpeg)

## **Advantages of time-based circuits: Compact area** Low power consumption

High precision tunability

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

![](_page_32_Picture_12.jpeg)

33 of 62

![](_page_33_Figure_0.jpeg)

# 40×40 A\* ASIC

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

# • Time $\propto$ Distance Each vertex stores first input **Directly readout** shortest path Multiple start points

![](_page_34_Figure_0.jpeg)

# 40×40 A\* ASIC- Vertex

![](_page_34_Figure_3.jpeg)

![](_page_35_Figure_0.jpeg)

# 40×40 A\* ASIC- Vertex

![](_page_36_Figure_0.jpeg)

# 40×40 A\* ASIC - Edge

![](_page_36_Figure_4.jpeg)

![](_page_37_Figure_0.jpeg)

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

![](_page_37_Figure_4.jpeg)

# Outline Background: Path Planning Algorithms Time-Based A\* ASIC 65nm Test Chip Results Applications • Conclusion

© 2019 IEEE **International Solid-State Circuits Conference** 

# Test Setup Custom Test PCB

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_4.jpeg)

![](_page_40_Figure_0.jpeg)

# **Edge Delay Linearity**

## Edge Code

STEP

DNI

[T<sub>STEP</sub>]

Z

![](_page_40_Figure_6.jpeg)

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

| Architecture                                                                                                 | This Work   | <b>FPGA</b> [4]        | μProcessor            | CPU [5]                    |      |  |  |
|--------------------------------------------------------------------------------------------------------------|-------------|------------------------|-----------------------|----------------------------|------|--|--|
| Product                                                                                                      | ASIC        | Xilinx Virtex          | <b>ARM Cortex-M0</b>  | Intel Xeon E5630           | NVIC |  |  |
| Technology                                                                                                   | 65nm        | 20nm                   | <b>40nm</b>           | <b>32nm</b>                |      |  |  |
| Voltage                                                                                                      | <b>1.2V</b> |                        | <b>1.1V</b>           | 0.7-1.35V                  |      |  |  |
| Peak Power                                                                                                   | 26.4mW      | 24.22W                 | 127µW                 | 20W/core                   |      |  |  |
| Throughput [MTEPS]                                                                                           | 559         | 731                    | 5.34*10 <sup>-4</sup> | 0.83                       |      |  |  |
| Energy per Node                                                                                              | 0.328pJ*    | 33nJ                   | 89.1nJ                | 24.1µJ                     |      |  |  |
| Normalized Energy                                                                                            | <b>1</b> x  | <b>10</b> <sup>5</sup> | 2.7x10 <sup>5</sup>   | <b>1.19x10<sup>6</sup></b> |      |  |  |
| <sup>55%</sup> from SRAM Program (does not include cache access energy)<br>Energy/Node=Unit Delay*Unit Power |             |                        |                       |                            |      |  |  |

[4]S. Zhou, et al, "High-Throughput and Energy-Efficient Graph Processing on FPGA," IEEE International Symp. on Field-Programmable Custom Computing Machines, pp. 103-110, 2016. [5] Y. Zhou and J. Zeng, "Massively Parallel A\* Search on a GPU," Conference on Artificial Intelligence *(AAAI)*, pp. 1248-1254, 2015.

# **Comparison Table**

# MTEPS = Million Traversed Edges Per Second

![](_page_41_Figure_8.jpeg)

# Outline Background: Path Planning Algorithms Time-Based A\* ASIC 65nm Test Chip Results Applications Conclusion

© 2019 IEEE International Solid-State Circuits Conference

• Applications: [Wikipedia]

© 2019 IEEE **International Solid-State Circuits Conference** 

# Voronoi Diagrams

۲

•

۲

- Segmentation of plane such that distance to seeds is maximized

  - kNN classification
  - Biological structures (bone and cells)
  - Computational fluid dynamics meshes
  - Autonomous vehicles

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

۲

![](_page_44_Figure_0.jpeg)

# **Collision Avoidance**

![](_page_44_Figure_4.jpeg)

![](_page_45_Figure_0.jpeg)

# **Collision Avoidance**

![](_page_46_Figure_0.jpeg)

# **Collision Avoidance**

© 2019 IEEE International Solid-State Circuits Conference

# Path Planning - Dijkstra's

| 5 |   |   |   |  |
|---|---|---|---|--|
| 0 | 1 | 2 | 3 |  |
| 1 | 2 | 3 | 4 |  |
| 2 | 3 | 4 | 5 |  |
| 3 | 4 | 5 | 6 |  |
| 4 | 5 | 6 | 7 |  |
|   |   |   |   |  |
| 5 | 6 | 7 | 8 |  |

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

![](_page_47_Figure_5.jpeg)

# All diagonal paths are equal

![](_page_47_Picture_7.jpeg)

© 2019 IEEE International Solid-State Circuits Conference

# Path Planning - Dijkstra's

![](_page_48_Figure_2.jpeg)

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

# Paths above blockage dominate paths below

49 of 62

.8 

© 2019 IEEE International Solid-State Circuits Conference

| ath Planning -<br>1 |            |      |             |            |     |
|---------------------|------------|------|-------------|------------|-----|
|                     | TVV<br>S 2 |      | VTVV<br>5.4 | VTV<br>6.8 |     |
|                     | 0          |      | 2           | 3          |     |
|                     |            |      | 6.8         |            |     |
|                     |            |      | 3           |            |     |
|                     | 11         | 9.4  | 8           |            | 9.  |
|                     | 6          | 5    | 4           |            |     |
|                     | 12         | 10.6 |             |            | 10. |
|                     | 7          | 6    |             |            |     |
|                     | 13.2       | 11.6 | 12.2        | 11.4       | 10. |
|                     | 8          | 7    | 8           | 9          |     |
|                     | 14.2       | 12.4 | 12          | 11.4       | 1   |
|                     | 9          | 8    | 9           | 10         |     |

![](_page_49_Picture_5.jpeg)

# Path Planning Finding shortest path w/o gradient 0.9V**0.9V** 0.7

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_4.jpeg)

![](_page_51_Figure_0.jpeg)

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

# Finding shortest path w/ gradient 0.7

![](_page_51_Picture_4.jpeg)

|    |                     |                   |                |                             |                  |                   | L_ L_ L_ L_ L_              |          |
|----|---------------------|-------------------|----------------|-----------------------------|------------------|-------------------|-----------------------------|----------|
|    |                     | LLLLL             |                |                             | LLLL             |                   |                             | LLI      |
| 5  |                     |                   | La La La La La | La La La La La              | La La La La La 1 | La La La La La I  | - La L <mark>a La</mark> La | L. L. 1_ |
| -  |                     |                   |                |                             |                  |                   |                             | L- L- 1  |
|    |                     |                   |                |                             |                  |                   |                             |          |
|    |                     | LLLLL             |                |                             |                  |                   |                             | LLI      |
| 10 |                     |                   |                | to to to to to              | to to to to to 1 | La La La La La t  | - La La La La               | t_ t_ 1_ |
|    |                     | to to to to to to | La La La La La | to to to to to              | to to to to to   | La La La La La L  | - La La La La               | t. t. 1  |
|    |                     |                   |                |                             |                  |                   | _ L_ L_ L_ L_               |          |
|    |                     |                   |                | La La La La La<br>1 1 1 1 1 |                  | La La La La La L  |                             |          |
| 15 |                     |                   |                |                             |                  |                   |                             |          |
| IJ | 1 -1 -1 -1 -1 -1    |                   | La La La La La | to to to to to              | La La La La La 1 | La La La La La L  | - t- t- t- t-               | L L 1    |
|    |                     | - La La La La La  | La La La La La |                             | to to to to to ! | La La La La La L  |                             | L- L- 1  |
|    |                     |                   |                |                             |                  |                   |                             | L_ L_ 1  |
| 20 |                     |                   |                |                             |                  | L. L. L. L. L. L. |                             |          |
| 20 |                     |                   |                |                             |                  |                   |                             |          |
|    |                     | LLLLL             |                |                             |                  |                   |                             | LLI      |
|    | للے لے لے لے ا      |                   |                | L. L. L. L. L.              | L. L. L. L. L. ! | L. L. L. L. L. I  |                             | L L 1    |
|    |                     | to to to to to    | Le Le Le Le Le | Le Le Le Le Le              | to to to to to   | La La La La La L  | - to to to to               | L- L- 1  |
| 25 |                     |                   |                |                             |                  |                   |                             |          |
|    |                     |                   |                | La La La La La<br>1 1 1 1 1 | 1 + 1 + 1 + 1    | La La La La La L  | - L- L- L- L-<br>1 1 1 1    |          |
|    |                     |                   |                |                             |                  |                   |                             | LLI      |
|    | 1                   |                   |                |                             |                  |                   |                             | L L 1    |
| 30 |                     |                   | to to to to to | L. L. L. L. L.              | to to to to to   | Le Le Le Le Le I  |                             | L. L. I_ |
| ~~ |                     |                   |                |                             |                  |                   |                             | L L !    |
|    |                     |                   |                |                             |                  |                   |                             |          |
|    |                     |                   |                |                             |                  |                   |                             |          |
| 25 |                     | LLLLL             |                |                             | 4444             |                   |                             | L L L    |
| 55 |                     | 44444             |                | 4444                        | 4 4 4 4 4        |                   |                             | ++1      |
|    |                     | FFFFFF            | FFFFF          | FFFFF                       | FFFFF            | rrrrr             |                             | FFI      |
|    | 1 -1 -1 -1 -1 -1 -1 | rrrrr             |                |                             |                  |                   |                             | F F 1    |
| 10 | 1                   |                   |                |                             | rrrrr.           |                   |                             | F F 1    |
| 40 |                     |                   |                |                             |                  |                   |                             |          |
|    | 5                   | 10                | 15             | 20                          | 25               | 30                | 35                          | 40       |

# **Multicore Evaluation (1/5)** Global Map

![](_page_52_Figure_4.jpeg)

![](_page_52_Figure_7.jpeg)

![](_page_52_Picture_8.jpeg)

![](_page_53_Figure_0.jpeg)

## **Multicore Evaluation (2/5)** Global Map 15

![](_page_53_Figure_3.jpeg)

![](_page_53_Figure_6.jpeg)

![](_page_53_Picture_7.jpeg)

|    |             |                       |                                     |                                      | ·                   |                |                 | -     |
|----|-------------|-----------------------|-------------------------------------|--------------------------------------|---------------------|----------------|-----------------|-------|
|    |             |                       |                                     |                                      |                     |                |                 | L 1   |
| -  |             |                       | - L- L- L- L                        | - L. L. L. L. L.                     |                     |                |                 |       |
| 5  |             |                       | - L- L- L- L- L                     |                                      |                     |                |                 | L i   |
|    | 1           |                       | - La La La La L                     |                                      | . La La La La La    |                |                 | L-1   |
|    |             |                       |                                     | - L- L- L- L- L-<br>1 1 1 1 1        |                     |                |                 |       |
| 10 |             |                       | LLLL                                |                                      | LLLL                | LLLL           | LLLL            | L i_  |
| 10 | 1           | - L. L. L. L. L. L.   |                                     | - L. L. L. L. L.                     | . La La La La La    |                | La La La La La  | L 1   |
|    |             |                       | - L. L. L. L. L.<br>- 1. 1. 1. 1. 1 | - L. L. L. L. L.<br>- 1- 1- 1- 1- 1- | . L. L. L. L. L. L. |                |                 |       |
|    |             |                       |                                     |                                      |                     |                |                 | Li    |
| 15 |             | - Le Le Le Le Le Le I | e Le Le Le Le L                     | - [- [- [- [- [-                     | . La La La La La    | Le Le Le Le Le | La La La La La  | L. !_ |
|    |             |                       |                                     | - L. L. L. L. L.                     |                     |                |                 |       |
|    |             |                       |                                     |                                      |                     |                |                 | L i   |
|    | 1-1-1-1-1-1 |                       | - La La La La L                     | - La La La La La                     | . La La La La La    |                |                 | L_ 1  |
| 20 |             |                       |                                     |                                      |                     |                |                 |       |
|    |             |                       |                                     |                                      |                     |                |                 | LI    |
|    |             | L to to to to to t    | . L. L. L. L. L                     | - L. L. L. L. L.                     |                     |                |                 | L 1   |
| 05 |             |                       |                                     | - L- L- L- L- L-                     |                     |                |                 |       |
| 25 |             |                       |                                     |                                      |                     |                |                 |       |
|    |             | - Lo toolo to to to t | - t- t- t- t- t                     | - L. L. L. L. L.                     | . La La La La La    | t. t. t. 📩     |                 |       |
|    |             |                       | - L- L- L- L- L                     | - L- L- L- L- L-                     |                     |                |                 |       |
| 20 |             |                       |                                     |                                      |                     |                |                 |       |
| 30 |             |                       |                                     |                                      |                     | L. L. L.       |                 |       |
|    |             |                       |                                     |                                      |                     |                |                 |       |
|    |             |                       | - L. L. L. L. L.<br>- L. L. L. L. L | - L- L- L- L- L-<br>- L- L- L- L- L- |                     | La La La       |                 |       |
| 35 |             |                       |                                     |                                      |                     | LLL            |                 |       |
| ~~ |             |                       |                                     |                                      |                     |                |                 |       |
|    |             |                       |                                     | - L. L. L. L. L.                     |                     |                |                 |       |
|    |             |                       |                                     |                                      |                     |                |                 | L 1   |
| 40 |             | to to to for to to t  |                                     | + L+ f+ L+ L+ L+                     | . La fa La La La    | La fa La La La | to for to to to | L- 1- |
|    | 5           | 10                    | 15                                  | 20                                   | 25                  | 30             | 35              | 40    |

© 2019 IEEE International Solid-State Circuits Conference

## Multicore Evaluation (3/5) Global Map 15

![](_page_54_Figure_4.jpeg)

0

![](_page_54_Picture_7.jpeg)

![](_page_54_Picture_8.jpeg)

![](_page_55_Figure_0.jpeg)

## © 2019 IEEE International Solid-State Circuits Conference

## **Multicore Evaluation (4/5)** Global Map 15

![](_page_55_Figure_5.jpeg)

![](_page_55_Picture_8.jpeg)

![](_page_55_Picture_9.jpeg)

![](_page_56_Figure_0.jpeg)

## **Multicore Evaluation (5/5)** Global Map 15

| <b>#</b> = = = = = = = = = = = = = = = = = = = |    |    |    | FF! |
|------------------------------------------------|----|----|----|-----|
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
|                                                |    |    |    |     |
| 15 20                                          | 25 | 30 | 35 | 40  |

![](_page_56_Figure_5.jpeg)

![](_page_56_Picture_7.jpeg)

![](_page_57_Figure_0.jpeg)

# **Optics Experiment**

|          |                                 | FFFF |  |
|----------|---------------------------------|------|--|
|          |                                 |      |  |
|          |                                 |      |  |
|          |                                 |      |  |
| <br><br> |                                 |      |  |
| <u> </u> | י <mark>ד רררו</mark><br>ידיררי |      |  |
|          |                                 |      |  |
|          |                                 |      |  |
|          |                                 |      |  |
|          |                                 |      |  |
|          |                                 |      |  |
|          |                                 |      |  |
|          |                                 |      |  |

![](_page_57_Picture_5.jpeg)

| F  |                                                            |                                                                                                                                        |         |                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                       |
|----|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|
| 5  |                                                            |                                                                                                                                        |         |                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                       |
| 10 |                                                            |                                                                                                                                        |         | · · · · · · · · · · · · · · · · · · · | ·                 | $ \begin{bmatrix}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                       |
| 15 | $ \begin{bmatrix} - & - & - & - & - & - & - & - & - & - &$ |                                                                                                                                        |         |                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                       |
| 20 |                                                            | $ \begin{array}{c} \cdot $ |         |                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                       |
| 25 |                                                            |                                                                                                                                        |         |                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                       |
| 30 |                                                            |                                                                                                                                        |         |                                       |                   | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $ |           |                       |
| 35 |                                                            |                                                                                                                                        |         |                                       |                   | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $ |           |                       |
| 40 | <u></u>                                                    | <u>יב ב ב</u><br>10                                                                                                                    | <u></u> | 20                                    | <u>2222</u><br>25 | 22 <mark>2</mark> 55<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>35</u> | <mark>בן</mark><br>40 |

# **Optics Experiment**

![](_page_58_Picture_4.jpeg)

# Outline Background: Path Planning Algorithms Time-Based A\* ASIC 65nm Test Chip Results Applications Conclusion

© 2019 IEEE **International Solid-State Circuits Conference** 

![](_page_60_Picture_0.jpeg)

![](_page_60_Picture_1.jpeg)

© 2019 IEEE International Solid-State Circuits Conference

# **Die Photo and Chip Summary**

![](_page_60_Figure_4.jpeg)

| <b>Applications</b>  | A* shorte st path,<br>obstacle avoidance,<br>scientific computation<br>(optics) |
|----------------------|---------------------------------------------------------------------------------|
| Technology           | 65nm LP CMOS                                                                    |
| Architecture         | Time-based                                                                      |
| <b># of Vertices</b> | 1600                                                                            |
| Unit Area            | 249µm <sup>2</sup>                                                              |
| # of Edges           | 6400                                                                            |
| Edge Resolution      | 4b + Analog Gradient                                                            |
| Voltage              | <b>1.2V</b>                                                                     |
| Peak Power           | 26.4mW                                                                          |
| Delay per Node       | 1.79ns @<br>[V <sub>B</sub> =.9V, V <sub>DD</sub> =1.2V]                        |
| Power per Node       | 183.1μW                                                                         |
| Energy per Node      | 0.238pJ                                                                         |
|                      |                                                                                 |

- A\* heuristic implemented with analog bias gradient
- Vertex cells asynchronously evaluate and lockout
- Diverse range of applications
- Scalable to multicore for larger maps
- Orders of magnitude improvement in energy efficiency

© 2019 IEEE **International Solid-State Circuits Conference** 

# Conclusion

• 40×40 A\* ASIC in 65nmLP

This research was supported in part by the National Science Foundation under award number CCF-1763761.

2.5: A 40 × 40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control

![](_page_61_Picture_16.jpeg)

62 of 62

![](_page_62_Picture_1.jpeg)