

# Session 17 - Modeling, Reliability and Safety A Counter based ADC Non-linearity Measurement Circuit and Its Application to Reliability Testing

<u>Gyusung Park</u>, Minsu Kim, Nakul Pande, Po-wei Chiu, Chris H. Kim

University of Minnesota, Minneapolis, USA





### Outline

- **Background**
- Proposed ADC Non-linearity Measurement Circuit
- o 65nm Test Chip Results
- Application to ADC Reliability Studies
- Conclusion



# **Analog-to-Digital Converter (ADC) Non-linearity**



- Differential Non-Linearity (DNL) : Deviation from ideal width (1LSB)
- Integral Non-Linearity (INL) : Maximum deviation from ideal slope





#### **Analog-to-Digital Converter (ADC) Non-linearity**



- Differential Non-Linearity (DNL) : Deviation from ideal width (1LSB)
- Integral Non-Linearity (INL) : Maximum deviation from ideal slope























#### **Pros.**

 Simple setup
Does not require any onchip measurement circuits

#### Cons.

 Susceptible to package and on-chip noise





# **Conventional On-chip Test Setup**







#### Outline

#### Background

#### Proposed ADC Non-linearity Measurement Circuit

#### o 65nm Test Chip Results

#### Application to ADC Reliability Studies

#### • Conclusion





#### Proposed In-situ DNL/INL Measurement Circuit (10b)



- Consists of a decoder block + array of 5b counters
- Counters corresponding to ADC codes increment their count value
- Count value instead of ADC output code → readout data volume↓





#### Proposed In-situ DNL/INL Measurement Circuit (10b)



- Separate ADC operation from data transfer operation
- Readout data volume↓ → small area overhead for storing data compared to SRAM array





#### **Interleaved Design for Area Reduction**



- 2-way interleaved design with only 50% counters
- Two separate tests for odd and even codes
- Stitch two test results for full DNL & INL histogram





# Step 1: Odd Code Measurement







# Step 2: Even Code Measurement







#### Implementation of DNL/INL Measurement Circuit



- Total 512 5-bit counters corresponding to ADC out D<9:1>
- Unit cell = 5b counter + scan-out circuits



# Noise Immunity: Proposed vs. Off-chip Test

CICC





### Outline

- Background
- Proposed ADC Non-linearity Measurement Circuit
- o 65nm Test Chip Results
- Application to ADC Reliability Studies
- Conclusion



# **Short-term Vth Instability**



- Short-term Vth degradation and recovery occur due to Bias Temperature Instability (BTI)
- Time constant usually in the  $\mu s$  ~10's of  $\mu s$  order



ie CICC



# **Impact on SAR-ADC Operation**



Large input voltage difference → offset due to short-term
Vth shifts





# **Impact on SAR-ADC Operation**



 If <u>input voltage difference < Vth shift difference</u> in the next step → incorrect decision





## **Impact on SAR-ADC Operation**



- Manifests as a 1LSB error in the output code
  - Correct code pattern "0111" vs Incorrect code pattern "1000"
- Affects high-resolution, low-speed SAR-ADCs



# **Output Codes Vulnerable to Short-term BTI**

|         | Conv. step |            |            |     |    |     |            |
|---------|------------|------------|------------|-----|----|-----|------------|
| Decimal |            | 0          | Bin        | ary | DE |     | generating |
| value   | D3         |            | זט         |     | DO | ••• | error      |
| 127     | 0          | 0          | <u> </u>   | 1   | 1  | ••• | D7         |
| 128     | 0          | 0          | 1          | 0   | 0  | ••• |            |
| 255     | 0          | <u>0</u>   | 1          | 1   |    | ••• | D8         |
| 256     | 0          | 1          | 0          | 0   | 0  | ••• |            |
| 383     | 0          | 1          | <b>_</b> 0 | 1   | 1  | ••• | D7         |
| 384     | Û          | 1          | 1          | 0   | 0  | ••• |            |
| 639     | 1          | 0          | <b>^</b> 0 | 1   | 1  | ••• | D7         |
| 640     | 1          | 0          | 1          | 0   | 0  | ••• |            |
| 767     | 1          | <b>(</b> ) | 1          | 1   | 1  | ••• | <b>D</b> 0 |
| 768     | 1          | 1          | 0          | 0   | 0  | ••• |            |
| 895     | 1          | 1          | <b>0</b>   | 1   | 1  | ••• | D7         |
| 896     | 1          | 1          | 1          | 0   | 0  | ••• |            |

W. Choi, C. H. Kim, CICC 2015

- Prior arts identified vulnerable output codes
  - Error can occur from second conversion step
  - Odd codes ending with **0111**...
  - Even codes ending with **1000**...



CICC



|         | Conv. step |            |            |    |    |            |       |
|---------|------------|------------|------------|----|----|------------|-------|
| Decimal |            | Binary     |            |    |    | generating |       |
| value   | D9         | <b>D8</b>  | D7         | D6 | D5 | •••        | error |
| 127     | 0          | 0          | <b>_0</b>  | 1  | 1  | •••        | D7    |
| 128     | 0          | 0          | 1          | 0  | 0  |            | DI    |
| 255     | 0          | <b>ر</b> ا | 1          | 1  | 1  | •••        |       |
| 256     | 0          | 1          | 0          | 0  | 0  | •••        | Do    |
| 383     | 0          | 1          | <b>_</b> 0 | 1  | 1  |            | D7    |
| 384     | 0          | 1          | <u>\</u> 1 | 0  | 0  |            | DI    |
| 639     | 1          | 0          | <b>_0</b>  | 1  | 1  |            | D7    |
| 640     | 1          | 0          | <u>×1</u>  | 0  | 0  | •••        | Dī    |
| 767     | 1          | <b>ر</b> ا | 1          | 1  | 1  | •••        | Po    |
| 768     | 1          | <b>1</b>   | 0          | 0  | 0  | •••        |       |
| 895     | 1          | 1          | <b>(</b> 0 | 1  | 1  |            | DZ    |
| 896     | 1          | 1          | <u>×1</u>  | 0  | 0  |            | D7    |

- E.g. Error occurring in **D8** step
  - Large  $\Delta V_{IN}$  @D9 + small  $\Delta V_{IN}$  @D8
  - Odd codes ending with 0111

Adjacent even codes ending with 1000





|         | Conv. step |            |            |    |    |     |            |
|---------|------------|------------|------------|----|----|-----|------------|
| Decimal | Binary     |            |            |    |    |     | generating |
| value   | D9         | D8         | <b>D7</b>  | Ď6 | D5 | ••• | error      |
| 127     | 0          | 0          | <b>0</b>   | 1  | 1  | ••• | <b>D7</b>  |
| 128     | 0          | 0          | 1          | 0  | 0  | ••• |            |
| 255     | 0          | <b>_0</b>  | 1          | 1  | 1  | ••• | D0         |
| 256     | 0          | \$1        | 0          | 0  | 0  | ••• | Do         |
| 383     | 0          | 1          | <b>_</b> 0 | 1  | 1  | ••• | D7         |
| 384     | 0          | 1          | 1          | 0  | 0  | ••• |            |
| 639     | 1          | 0          | <b>0</b>   | 1  | 1  | ••• | D7         |
| 640     | 1          | 0          | 1          | 0  | 0  | ••• |            |
| 767     | 1          | <b>~</b> 0 | 1          | 1  | 1  |     | D0         |
| 768     | 1          | <u>\$1</u> | 0          | 0  | 0  | ••• | Do         |
| 895     | 1          | 1          | <b>0</b>   | 1  | 1  | ••• | D7         |
| 896     | 1          | 1          | <u>×1</u>  | 0  | 0  | ••• |            |

- E.g. Error occuring in **D7** step
  - Large  $\Delta V_{IN}$  @D9, D8 + small  $\Delta V_{IN}$ @D7
  - Odd codes ending with 0111

Adjacent even codes ending with 1000



# **Stress Equalization, Variable Duty Cycle**



- Stress equalization using switched source node
- Ratio between stress and recovery times can be varied
  - Multi-phase VCO used to generate different duty cycles





- Shorter duty cycle → shorter BTI stress & longer recovery time
  - DNL increases (or decreases) for odd (or even) vulnerable codes
  - Subtle shift because comparators use IO input devices



### **10b DNL vs. Clock Frequency**



 Short term Vth instability effect less at higher frequencies due to reduced stress time



# **10b DNL vs. Comparator Type**



Short term Vth instability effect more pronounce for PMOS input comparator



# **Chip Summary & Die Photo**

| L     |                    |                         |                         |                                |
|-------|--------------------|-------------------------|-------------------------|--------------------------------|
| D I   | 250µm              | Proc                    | ess                     | 65nm CMOS                      |
| 385µm |                    | Core / IO               | supply                  | 1.0V / 2.5V                    |
|       | 8                  | ADC res                 | olution                 | 10-bit                         |
|       | CDAC               | DNL<br>(max)            | vs Con.<br>(w/o SRAM)   | 0.88 LSB<br>(1.23 LSB improv.) |
|       |                    | Read Out<br>Data Volume | vs Con.                 | 1/64<br>(for 32 samples/code)  |
| 20um  | In-situ<br>INL/DNL | Tr. count o<br>measurem | of on-chip<br>ent block | 94K<br>(Counters only)         |
| 24    | Meas. Block        | DN                      | IL                      | +0.34 / -0.88 LSB @ 1MHz       |
|       |                    | IN                      | L                       | +1.67 / -1.41 LSB @ 1MHz       |
|       | 635µm              | Total ch                | ip area                 | 0.57mm <sup>2</sup>            |





# Conclusion

- Counter based measurement circuit is demonstrated for precise characterization of ADC DNL and INL
- Using the proposed method, short-term BTI is studied in a 10-bit SAR-ADC in 65nm CMOS
- Subtle DNL shifts can be accurately measured using the proposed method

Acknowledgement: Dr. Vijay Reddy and Dr. Srikanth Krishnan at Texas Instruments for their technical feedback. This work was supported in part by the Semiconductor Research Corporation(SRC) and the Texas Analog Center of Excellence (TxACE).

