A Fully Integrated 40pF Output Capacitor Beat-Frequency-Quantizer-Based Digital LDO with Built-In Adaptive Sampling and Active Voltage Positioning

<u>Somnath Kundu</u>¹, Muqing Liu¹, Richard Wong², Shi-Jie Wen², Chris H. Kim¹

¹Dept. of ECE, University of Minnesota, Minneapolis, MN ²Cisco Systems, San Jose, CA

CISCO

Outline

- Background: Analog vs. Digital LDO
- Time based Digital LDO
- Beat-Frequency Quantizer
- Active Voltage Positioning (AVP)
- 65nm Test Chip Results
- Conclusion

Analog vs. Digital LDO

- Benefits of digital implementation:
 - ✓ Scalability with technology
 - \checkmark Low voltage operation \rightarrow DVFS
 - ✓ Loop parameters controlled digitally

Ref: Y. Okuma, CICC'10

VDDH

Digital LDO Architectures

Single-bit Quantizer

✓ Low complexityX Slow responseX Poor stability

Multi-bit Quantizer

X High complexity✓ Fast response✓ Good stability

Outline

- Background: Analog vs. Digital LDO
- Time based Digital LDO
- Beat-Frequency Quantizer
- Active Voltage Positioning (AVP)
- 65nm Test Chip Results
- Conclusion

Time based Digital LDO

- VCO followed by a time-quantizer
- Fully digital voltage quantization
- 1st order quantization noise shaping

Conventional Linear Time-Quantizer

- N_{OUT} = # of CK_{OUT} periods within a sampling period
- Constant sampling period

Conventional Linear Time-Quantizer

- N_{out} proportional to CK_{out}
- **N-N**_{OUT} provides amount of pMOS switching
- Large N improves resolution but slow response

Trade-off between speed and power/stability

Outline

- Background: Analog vs. Digital LDO
- Time based Digital LDO
- Beat-Frequency Quantizer
- Active Voltage Positioning (AVP)
- 65nm Test Chip Results
- Conclusion

Proposed Beat Frequency Time-Quantizer

- D-flip-flop acts as a beat frequency generator
- Larger frequency difference generates higher f_s

B. Kim, VLSI'15 (BF-PLL) S. Kundu, CICC'15 (BF-ADC) This work (BF-LDO)

Proposed Beat Frequency Time-Quantizer

- When $|V_{REF} V_{OUT}|$ is larger:
 - pMOS switching frequency becomes faster
 - pMOS switching amount increases due to large |N N_{OUT}|

Beat Frequency for Adaptive Sampling

18.5 A Fully Integrated 40pF Output Capacitor Beat-Frequency-Quantizer-Based Digital LDO with Built-In Adaptive Sampling and Active Voltage Positioning

Outline

- Background: Analog vs. Digital LDO
- Time based Digital LDO
- Beat-Frequency Quantizer
- Active Voltage Positioning (AVP)
- 65nm Test Chip Results
- Conclusion

Active Voltage Positioning

Ref: K. Yao, APEC'2004

Active Voltage Positioning

Ref: K. Yao, APEC'2004

Active Voltage Positioning

- BF quantizer provides inherent AVP
- Voltage position is set by N

Outline

- Background: Analog vs. Digital LDO
- Time based Digital LDO
- Beat-Frequency Quantizer
- Active Voltage Positioning (AVP)
- 65nm Test Chip Results
- Conclusion

Complete Block Diagram of Digital LDO

BF Quantizer Design

- An 8-bit counter counts the number of CK_{REF} periods in a beat period
- Counter resets at the beginning of each beat period

PMOS Switch Array and Driver

- Uniformly distributed layout for matching
- Equal loading for all bits (C₉-C₀) using dummies

VCO Schematic

- Coarse tuning: wide range of input/output voltage
- Fine tuning: compensates any mismatch between VCO pair

65nm Chip Micrograph

Measured Transient Response: I_{LOAD} **step**

- Higher sampling frequency during I_{LOAD} transition
- 108mV droop and 148mV overshoot for 50mA I_{LOAD} step

Measured Transient Response: I_{LOAD} **step**

 5x droop and 25x settling time for baseline

Voltage Droop and Settling Time Measurements

- ΔV improvement: 5X 10X
- T_s improvement: 20X 35X

- ΔV improvement: 1.5X 4X
- T_s improvement: 15X 30X

Measured Line and Load Regulation

- Line regulation for V_{REF} > 0.4V
- Load regulation for 10x variation in I_{LOAD}

Active Voltage Positioning Measurements

Measured Current Efficiency and PSRR

- Current efficiency >93% for 10-100mA I_{LOAD} with max of 99.5%
- Low frequency PSRR of -38dB

Performance Comparison Table

	Nasir, ISSCC'15	Lee, ISSCC'16	Salem, ISSCC'17	Kim, ISSCC'17	This Work
Process	130nm	28nm	65nm	65nm	65nm
Architecture	Shift Reg	Shift Reg+ADC	SAR ADC	Event-driven ADC	VCO based ADC
Adaptive sampling/ AVP	Yes / No	No / No	No / No	Yes / No	Yes / Yes
V _{LDO_IN} (V)	0.5– 1.2	1.1	0.5– 1	0.45 – 1	0.6– 1.2
V _{LDO_OUT} (V)	0.45- 1.14	0.9	0.3- 0.45	0.4- 0.95	0.4– 1.1
Max .I _{LOAD} (mA)	4.6	200	2	3.36	100
l _Q (mA)	0.024- 0.22	0.11	0.014	0.08- 0.26	0.1– 1.07
C _{LOAD} (nF)	1	23.5	0.4 (Integrated)	0.1 (Integrated)	0.04 (Integrated)
Max current efficiency (%)	98.3	99.94	99.8	99.2	99.5
ΔV,Ts @ΔI _{LOAD}	90mV,1.1μs@ 1.4mA	120mV,40 μs [#] @180mA	40mV,0.1μs @1.06mA	34mV.11.2μs @1.44mA	108mV,1.24μs @50mA
Area (mm²)	0.355	0.021	0.0023*	0.03*	0.0374
FOM (ps)**	10100	9.57	199	20	1.38

[#]From oscilloscope waveform *Without C_{LOAD}

**FOM= $C_{LOAD}\Delta V * I_Q / (\Delta I_{LOAD})^2$. Smaller FOMs are better

Conclusion

- A fully integrated digital LDO using <u>VCO based</u> <u>time quantization</u>
- Adaptive sampling clock utilizing beat-frequency
- Built-in <u>active voltage positioning</u>
- Measured max current efficiency is 99.5% with FOM of 1.38ps in 65nm CMOS