All-Digital PLL Frequency and Phase Noise Degradation Measurements Using Simple On-Chip Monitoring Circuits

Gyusung Park, Bongjin Kim*, Minsu Kim, Vijay Reddy** and Chris H. Kim

University of Minnesota, Minneapolis, MN, USA *Nanyang Technological University, Singapore **Texas Instruments, Dallas, TX, USA

> park1582@umn.edu chriskim.umn.edu

Purpose

- Experimental study of all-digital PLL (ADPLL) reliability issues
- ADPLL frequency and phase window measurements using on-chip monitors

Outline

- Motivation
- Proposed on-chip monitors
- 65nm ADPLL chip test setup
- Stress, recovery, annealing results
- Conclusions

Target Circuit: All-Digital Phase Locked Loop (ADPLL)

- Key building block for processor clock generation and wireless communication
- No prior work on ADPLL reliability behavior

ADPLL Reliability Figure-of-Merit

- Frequency: open-loop and closed-loop
- Phase noise, jitter degradation

Drawback of Conventional Off-chip Measurement

- Requires high speed probes or packages, offchip drivers and connectors
- Each of these components introduces inaccuracy in the measurement

Outline

- Motivation
- Proposed on-chip monitors
- 65nm ADPLL chip test setup
- Stress, recovery, annealing results
- Conclusions

Beat Frequency Monitor

- "Silicon odometer" beat frequency detection circuit adopted for frequency measurements
- Higher precision (~ps) and shorter measurement time (~µs) compared to simple counter based scheme

Beat Frequency Monitor Before Stress

Beat Frequency Monitor Under Stress

Phase Window Monitor

- Clock period (including jitter) compared with tunable delay
- Indirectly measure phase noise by sweeping tunable delay

Phase Window Measurement

 As tunable delay approaches the clock period, error rate increases

Phase Window Measurement

- As tunable delay increases ٠ beyond the clock period, error rate decreases
- Phase window in right ulletfigure = a measure of phase noise

Outline

- Motivation
- Proposed on-chip monitors
- 65nm ADPLL chip test setup
- Stress, recovery, annealing results
- Conclusions

Die Photo and Chip Description

Process	65nm CMOS
System	All-Digital PLL
Nominal supply	1.2V
Stress supply	2.4V
Annealing temp.	110°C, 240°C
DCO frequency (free running)	720MHz @1.2V 1.54GHz @2.4V
Circuit area	0.08mm ²

Measurement Setup

Hot Plate

No power @ 110°C, 240°C

Open-loop and Closed-loop Configurations

- Stress mode: Stress supply (2.4V) for stressed DCO, 0V for reference DCO
- Measurement mode: Nominal supply (1.2V) for both stressed and reference DCOs

Outline

- Motivation
- Proposed on-chip monitors
- 65nm ADPLL chip test setup
- Stress, recovery, annealing results
- Conclusions

Open-Loop Results: Frequency

- Stress \rightarrow BTI, HCI \rightarrow frequency degradation
- Natural recovery and annealing
- Cool down the chip after annealing → remove any residual heat

Open-Loop Results: Frequency

- Stress → BTI, HCI → frequency degradation
- Natural recovery and annealing
- Cool down the chip after annealing → remove any residual heat

Open-Loop Results: Phase Window

- Phase window @ error rate = 1E-8
- More degradation → larger phase window

Closed-Loop Results: Frequency

 Feedback loop ensures that output frequency is constant

Closed-Loop Results: Phase Window

- Error rate curves all centered around same frequency due to feedback loop
- Longer stress → larger phase window

Phase Window Recovery

 Phase window almost fully recovered after annealing @ 240°C

Outline

- Motivation
- Proposed on-chip monitors
- 65nm ADPLL chip test setup
- Stress, recovery, annealing results
- Conclusions

Conclusions

- ADPLL frequency and phase noise characterized for the first time using on-chip monitors
- Phase noise increases with stress for both open-loop and closed-loop configurations
- High temperature annealing can be used to recover most of the degradation
- Post-stress phase noise measurements critical for reliability assurance