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Abstract – A neuromorphic core utilizing logic-compatible 
embedded flash technology for storing multi-level synaptic 
weights is demonstrated in a 65nm standard CMOS process. 
A carefully-designed program-verify sequence along with a 
bitline voltage regulation scheme allows the individual cell 
currents to be programmed precisely. This makes it possible 
to enable a large number of rows in parallel without 
impacting the current summation accuracy. Furthermore, 
eflash based synapses are non-volatile and hence consumes 
zero standby power and supports instant on/off operation. 
Our design stores excitatory and inhibitory weights in 
adjacent bitlines whose voltage levels are regulated for 
accurate current programming and measurement. Output 
spikes are generated by comparing the excitatory and 
inhibitory bitline currents. Our logic-compatible eflash-based 
spiking neuromorphic core achieves a 91.8% handwritten 
digit recognition accuracy which is close to the accuracy of 
the software model with the same number of weight levels. 
The maximum throughput of the core is 1.28G pixels/s and 
the average power consumption of a single neuron circuit is 
15.9 W. 

I. INTRODUCTION 

Deep neural networks contain multiple computation 
layers each performing a massive number of multiply-and-
accumulate operations (i.e. ) between the input data and 
trained weights. The computation is typically performed by a 
digital processor while the data and weight are transferred 
back and forth between the DRAM and the on-chip buffer 
memory. To overcome the memory bottleneck, there is 
growing interest in so-called “compute-in-memory” 
architectures where the weights are stored in a dense memory 
while the multiply-and-accumulate function is performed in 
the analog domain. Here, the input data is typically loaded on 
to the memory wordlines, activating multiple cell currents at 
the same time. The individual cell currents are summed up 
and compared to a pre-defined threshold by the local 
“neuron” circuit. Ideally, memory cells used for compute-in-
memory architectures should be non-volatile as this obviate 
the need for reloading the weights after a power down period. 
It is also highly desirable if the memory cell can support 
multi-level storage as this can enhance the accuracy of 
inference tasks.  

Both volatile and non-volatile memories have been 
considered for synaptic weight storage including SRAM, 

magnetic tunnel junctions (MTJs) and resistive RAM 
(RRAM), flash, and phase-change memory (PCRAM) [1]-[6]. 
Each type of memory has its advantages and disadvantages. 
For instance, SRAM based synapses can be readily 
implemented in a standard CMOS process, but suffers from 
process variation which cannot be corrected after the chip has 
been fabricated. MTJs, RRAM, and PCRAM are non-volatile 
and dense. However, an MTJ can only store a 1 bit weight 
and the difference between the high resistance and low 
resistance states is only about 2X, rendering analog 
computing impractical. RRAM provides a wider resistance 
range, but the technology remains immature. Furthermore, 
robust multi-level programming has proven to be challenging 
for RRAM and PCRAM due to low controllability of the 
filament formation and heat diffusion [7]. Flash memory 
technology can easily store multiple levels by adjusting the 
number of electrons stored on a floating gate through row-by-
row program-verify operation. However, conventional flash 
memory requires a specialized dual-poly or split-gate process 
which doesn’t scale well below 40nm.  

In this work, we demonstrate a logic-compatible eflash 
based spiking neuromorphic core in a 65nm standard CMOS 
process featuring multi-level non-volatile weight storage, and 
single cycle current integration and spike generation. The 
weights were tuned precisely using a carefully-designed 
program-verify sequence, allowing 68 individual cell currents 
to be summed up simultaneously, which to our knowledge, is 
the highest number ever reported.  

II. EFLASH-BASED NEUROMORPHIC CORE DESIGN 

Fig. 1 shows a comparison between dual-poly and 
single-poly eflash cells. Dual-poly eflash cell stores charge 
on a floating gate fabricated between the control gate and 
channel. Single-poly eflash cell is implemented using back-
to-back connected transistors and hence does not require any 
modification to the process. The detailed schematic of the 5T 
eflash cell used in this work is shown in Fig. 2 where two 
asymmetrically sized PMOS devices are used for high 
voltage program and erase operation while the NMOS read 
device is accessed through two additional NMOS switches 
[8][9]. Different cell currents can be programmed as shown 
in Fig. 2 (right).  

Synaptic weights stored in two adjacent bitlines as 
illustrated in Fig. 3. If the weight is positive then the cell 
current of the left bitline is increased accordingly while the 
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cell current on the right bitline is programmed to <0.1μA, 
and vice versa. Four flash cells are reserved on each bitline 
for the spiking threshold. The input data is simultaneously 
loaded onto the wordline which activates multiple memory 
cell currents at the same time. The sum of the individual cell 
currents flows through each bitline. The bitline pair generates 
two currents: excitatory and inhibitory currents. The neuron 
circuit generates a spike depending on which bitline current 
is higher. Note that the weight multiplication, accumulation, 
and spike generation are all performed in a single cycle, 
which speeds up the overall computation. 

The core architecture is shown in Fig. 4 (left). It contains 
high voltage switches (HVSs) for driving wordlines, neuron 
sensing circuits for current comparison and spike generation, 
and scan chains for data input/output. The HVS circuit must 
withstand a voltage as high as 10V during program and erase 
modes. We employed the multi-story latch based HVS circuit 
[8][9] because it is inherently immune to overstress issues 
and implementable using standard IO devices. The circuit 
diagram and layout of the unit 5T eflash cell are shown in Fig. 
4 (right).  

The weights are written to the array by first erasing the 
entire array and then adjusting the threshold voltage of each 
individual eflash cell. This is done by simultaneously 
programming each row through a selective program-verify 
operation. The cell currents were set to either 0, 5, or 10 μA 
while keeping the gate bias (VRD=0.8V) and drain bias 
(VBL=0.6V) fixed. This translates into five distinct weight 
levels (i.e. -10, -5, 0, 5, or 10 μA) using the bitline pair 
configuration described earlier in Fig. 3. Retention 
characteristics shown later in Fig. 15 confirm that a 5 μA 
margin between the different levels is sufficient to overcome 
charge loss issues. The wordline and bitline bias condition 
for erase, program, and program inhibition modes are 
denoted in Fig. 5. To obtain a precise cell current 
corresponding to the weight value, the bitline voltages were 
regulated to 0.6V during both verify and inference modes. 
Our neuron circuit shown in Fig. 6 employs a feedback loop 
to maintain a fixed 0.6V bitline voltage regardless of the 
amount of current flowing through the bitline. The bitline 
current is indirectly measured by reading out the feedback 
voltage driving the PMOS load. This makes it possible to 
compare the two bitline currents using a simple voltage sense 
amplifier circuit. The same neuron circuit was used for 
current-verify operation as shown in Fig. 6 (right). Here, the 
cell currents of the left and right bitlines were verified 
separately by activating one bitline at a time. The overall 
operation sequence of our neuromorphic core is shown in Fig. 
7.   

III. EXPERIMENTAL RESULTS 

We first measured the program and program inhibition 
characteristics of the 5T eflash cell. The average  current of 
100 cells was measured for different program voltages, 
program pulse widths, and program pulse counts. Fig. 8 
confirms excellent program and program inhibition results. 
Based on the test results, we designed the program sequence 

in Fig. 9 for configuring the cell currents. To minimize cell 
disturbance, we first programmed the weight 0 cells (i.e. 
<0.1μA) while inhibiting the program of weight 1 and 2 cells. 
To ensure that the cell currents of all weight 0 cells are below 
0.1 A, we use a high voltage (8.8V), long pulse width (20 s), 
and large pulse count (8). Next, the rest of the cells were 
programmed to an intermediate current level of about 15μA 
using a single 7.4V and 40 s pulse. Then, using smaller and 
shorter pulses (i.e. 7.1V, 5 s), we adjusted the weight 2 cells 
to 10 A, and finally the weight 1 cells to 5 A. Note that the 
unselected wordlines are not driven to a high voltage 
preventing the cells on those wordlines from being disturbed. 
Fig. 10 shows the cell currents for trained weights of the 
MNIST handwritten digit recognition algorithm. The 
variation for weight 0 cells is less than 0.1 A. Weight 1 and 
2 cells also have a variation of only 0.8 A. The total number 
of program pulses applied to each wordline ranges from 25 to 
32 as shown in Fig. 11. The average power consumption of a 
single neuron during inference mode is 15.9μW (Fig. 12). 
Fig. 13 provides further insight on how the cell current 
changes with more program pulses for weight 1 and weight 2 
cells. It can be seen that that intrinsic cell current variation of 
7 A is reduced to 0.8 A after the proposed program-verify 
sequence. This offers a significant advantage over SRAM or 
MRAM based implementations which do not have any post-
silicon tuning capabilities.  

Fig. 14 shows the overall work flow for demonstrating 
the handwritten digit recognition application on our test chip. 
During training phase, weights were trained based on 60,000 
handwritten digit images from the MNIST dataset [10] and 
downloaded to the test chip. During inference phase, the 
neuromorphic core generates a spike signal based on the 
16x16 pixel data and the programmed weights. 10,000 
MNIST test images were processed to calculate the 
prediction accuracy. The accuracy measured from the test 
chip was 91.8% (Fig. 14) which is close to the software 
accuracy of 93.8% for the same number of distinct weight 
levels (i.e. 5). The small discrepancy can be attributed to 
noise effects and sense amplifier offset. Retention 
characteristics were measured after baking the chip for 16 
hours at 150°C. Measured results in Fig. 15 confirm that the 
margin between the different current levels is not 
compromised, suggesting that storing more than 5 levels is 
also possible. Comparison with previous SRAM, RRAM, and 
NOR flash based neuromorphic core designs underscores the 
promising features of our logic-compatible eflash-based 
design (Fig. 16). The die photo and chip feature summary are 
given in Fig. 17.  
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Fig. 4. (a) Overall neuromorphic core with high voltage switch, eflash array, 
and neuron sensing circuit. (b) Single column pair and 5T unit cell layout.  

 
Fig. 1. Comparison between dual-poly eflash 
(left) and single-poly eflash (right).  
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Fig. 5.  Bias conditions of the proposed 5T eflash cell for
erase and program operations [8]. 

 
Fig. 6. Neuron circuit with regulated bitline voltage; (left) inference mode for spike 
generation and (right) weight programming mode with program-verify operation.  
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Fig. 3. Excitatory and inhibitory
weight values are stored in two
adjacent bitlines. Currents are summed
up and compared for spike generation.  
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Fig. 7. Overall neuromorphic core operation
sequence: Weight programming mode (upper) and
inference mode (lower).  

 
Fig. 2. Output characteristic of proposed 5T eflash cell for
different floating gate (FG) node voltages. Multi-level
weights can be stored precisely through program-verify.  
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Fig. 8. Cell current versus number 
of program pulses for program 
inhibited cells (upper row) and 
programmed cells (low row). 
Results are shown for different 
pulse widths (i.e. 1μs, 5μs, 10μs, 
20μs) and 0.1V program bias 
increments from 7.0V to 8.8V. 
Test chip data shows reliable 
programming and minimal 
program disturbance.  
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Fig. 11. The number of program pulses 
applied to each wordline for MNIST 
handwritten digit recognition.  

 
Fig. 17.  Die microphotograph and test chip
feature summary.   

 
Fig. 13.  Cell current versus program pulse count when
applying the program-verify sequence.  
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Fig. 14. (Left) Demonstration flow of hand-written digit recognition algorithm using the 
proposed neuromorphic core. (Right) Histograms of neuron output for 10,000 MNIST test 
images measured from the eflash-based neuromorphic core chip.  

 
Fig. 10.  Individual cell currents in bitline and wordline direction for
MNIST trained weights. The exceptionally tight current distribution
suggests that storing 3 or more levels of weights is possible.  

     
 

Fig. 9. Pulse sequence for programming weights 0, 1, and 2 into
the eflash neuromorphic core. Multi-level weights can be
programmed precisely owing to the carefully-design program-
verify sequence. 
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Fig. 12. Power consumption of each
neuron during inference mode at
VDD=1.0V.  

 
Fig. 15. Retention characteristics of 
weight 0, 1, and 2 cell currents confirm 
that the margin between the different 
states remains constant. Baking
temperature was 150°C.  
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Fig. 16.  Comparison with prior art. 
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