A 0.0094mm2/Channel Time-Based Beat Frequency ADC in 65nm CMOS for Intra-Electrode Neural Recording

Luke Everson1, Somnath Kundu1, Gang Chen2, Zhi Yang3, Timothy J. Ebner2, and Chris H. Kim1

1Dept of Electrical and Computer Engineering
2Dept of Neuroscience
3Dept of Biomedical Engineering
University of Minnesota, Minneapolis, MN 55455 USA
Motivation

Conventional

[N-bit [µV~mV]

Proposed

[N-bit [µV~mV]
Motivation

Conventional

[μV–mV]

+ -

PA LNA BPF PGA BUF AN MUX ADC

N-bit

Proposed

[μV–mV]

+ -

TIA BPF BF-ADC

Technology Scaling

N-bit

C. Lopez, IEEE TBioCAS, 2017
Clinical Applications

- Alzheimer’s disease is 6th leading cause of death in US
- Neurodegenerative disease that also affects families of the patients
- $200B$ annual cost
- Need new tools to study causes to find cure
• **Neural BFADC Recording system**
• **Fully Integrated on-chip enabling high channel count density**
• **Digital Time-based Beat Frequency ADC**
Analog Front End

Signal

Ref

TIA

BPF

OSC

BFADC

\[f_{\text{SIG}} \]

\[f_{\text{REF}} \]

\[\Delta f = |f_{\text{REF}} - f_{\text{SIG}}| \]

\[N = f_{\text{REF}} / \Delta f \]

Freq. subtractor

\[V_{\text{DD}}/2 \]

\[V_{\text{DD}}/2 \]

\[V_{\text{in}} \]

\[V_{\text{out}} \]

Thick Ox
Band-pass Filter

Signal

Ref

TIA

BPF

OSC

BFADC

OSC

DFF

Counter

Freq. subtractor

HPF

Thick Ox

+ NWell Caps

V_{HPF}

V_B

LPF

V_{LPF}

Thick Ox

V_B

Measured SNDR, (dB)

65nmLP, 0.8V, 25C

Spikes

LFPs

65nmLP, 0.8V, 25C

f_{REF}

f_{SIG}

\Delta f = |f_{REF} - f_{SIG}|

N = f_{REF} / \Delta f

f_{SIG}

V

B

V

B

\Delta f

\Delta f = |f_{REF} - f_{SIG}|

N = f_{REF} / \Delta f

Counter

Freq. subtractor

Signal

Ref

TIA

BPF

OSC

BFADC

OSC

DFF

Counter

Freq. subtractor

HPF

Thick Ox

+ NWell Caps

V_{HPF}

V_B

LPF

V_{LPF}

Thick Ox

V_B

Measured SNDR, (dB)

65nmLP, 0.8V, 25C

Spikes

LFPs

65nmLP, 0.8V, 25C

f_{REF}

f_{SIG}

\Delta f = |f_{REF} - f_{SIG}|

N = f_{REF} / \Delta f

f_{SIG}

V

B

V

B

\Delta f

\Delta f = |f_{REF} - f_{SIG}|

N = f_{REF} / \Delta f

Counter

Freq. subtractor

65nmLP, 0.8V, 25C

Spikes

LFPs

65nmLP, 0.8V, 25C

f_{REF}

f_{SIG}

\Delta f = |f_{REF} - f_{SIG}|

N = f_{REF} / \Delta f

f_{SIG}

V

B

V

B

\Delta f

\Delta f = |f_{REF} - f_{SIG}|

N = f_{REF} / \Delta f

Counter

Freq. subtractor

65nmLP, 0.8V, 25C

Spikes

LFPs
Current Controlled Oscillator

Signal

Ref

TIA

BPF

OSC

\[f_{SIG} = f_{REF} - f_{SIG} \]

\[N = f_{REF} / \Delta f \]

\[\Delta f = |f_{REF} - f_{SIG}| \]

BFADC

Freq. subtractor

Counter

\[V_{DDH} \]

\[V_{IN} \]

2b

Coarse tuning

Fine tuning

3b

\[Code = 00100 \]

Frequency, (MHz)

Bias, (V)

Graph:

65nmLP, 1.2V, 25C

Code = 00100

0.2 0.4 0.6 0.8 1 1.2

0 40 80 120 160 200
Beat Frequency ADC

\[\Delta f = |f_{\text{REF}} - f_{\text{SIG}}| \]

\[N = f_{\text{REF}} / \Delta f \]
Silicon Odometer Beat Frequency Ckt

\[
\Delta V_T (\text{a.u.})
\]

- **Trapping**
- **Detrapping**

- **Diagram:**
 - Circuit diagram with labeled nodes A, B, C, D, and Q.
 - DFF (Delay-Flop-Flop) block.
 - Trap and Carrier section.

- **Graph:**
 -
 - Vertical axis: \(\Delta V_T \) in a.u.
 - Horizontal axis: Time

- **Equation:**
 \[
 T \quad A \quad u \quad \Delta \quad V \quad T
 \]

- **Title:** Silicon Odometer Beat Frequency Ckt
Silicon Odometer Beat Frequency Ckt

Trapping Detrapping

D Q
DFF

\[\Delta V_T (\text{a.u.}) \]

0

0.4

0.8

1.2

A

B

C

S

Carrier

D

Trap
Silicon Odometer Beat Frequency Ckt

\[\Delta V_T (\text{a.u.}) \]

- Trapping
- Detrapping

Diagram of Silicon Odometer Beat Frequency Ckt

- DFF
- S, Carrier, D
- Trap

Graph showing Trapping and Detrapping

[Diagram and graph details]
Silicon Odometer Beat Frequency Ckt

- Sub-ps resolution + sub-μs measurement time
Beat Frequency ADC

Signal

Ref

TIA

BPF

OSC

f_{SIG}

f_{REF}

\Delta f = |f_{REF} - f_{SIG}|

N = f_{REF}/\Delta f

Conventional

freq = f_{SIG}

df = f_{REF}/N_0

freq = f_{REF}/N_0

250MHz

225MHz

245MHz

225MHz

250MHz

5MHz

25MHz

N_{OUT} = 50

N_{OUT} = 45

freq = f_{SIG}/N

freq = f_{REF}/N_0

BFADC

DFF

Counter

Freq. subtractor
Linear vs BFADC Transfer Function

![Transfer Function Diagram](image)

<table>
<thead>
<tr>
<th>N_0</th>
<th>Linear Quantizer</th>
<th>BF Quantizer (This work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>$49^2 = 2401$</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>$99^2 = 9801$</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>$199^2 = 39601$</td>
</tr>
</tbody>
</table>

(Table shows quantizer gain normalized to f_{REF})
Bench-top Performance

- $F_{\text{in}} = 416\text{Hz}$
- $N = 34.5$ gain is ~ 1100
- $0\text{dBFS} = 1.2\text{V}$
In-vivo Results

- Purkinje fibers in anesthetized WT/FVB mouse
- Tungsten stimulation electrode
- Glass micropipette recording electrode
- Flavoprotein Autofluorescence to locate fibers
Comparison Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC Type</td>
<td>Beat Freq.</td>
<td>VCO</td>
<td>CT-$\Delta\Sigma$</td>
<td>VCO-$\Delta\Sigma$</td>
<td>1-Step BF</td>
<td>Incr.-$\Delta\Sigma$</td>
</tr>
<tr>
<td>Process/Supply</td>
<td>65nm/0.8V</td>
<td>40nm/1.2V</td>
<td>130nm/1.2V</td>
<td>130nm/1.2V</td>
<td>65nm/1.2V</td>
<td>180nm/1.2V</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>4.5kHz</td>
<td>200Hz</td>
<td>15MHz</td>
<td>1.7MHz</td>
<td>1.2KHz</td>
<td>4kHz</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>50kHz</td>
<td>3kHz</td>
<td>500MHz</td>
<td>250MHz</td>
<td>50kHz</td>
<td>8kHz</td>
</tr>
<tr>
<td>$\text{In}_{0\text{db}}$ [dBFS]*</td>
<td>-84</td>
<td>-75</td>
<td>-80</td>
<td>-75</td>
<td>-86</td>
<td>-85</td>
</tr>
<tr>
<td>$\text{SNDR}_{1\text{mVpp}}$ [dB]**</td>
<td>20.9</td>
<td>35</td>
<td>20</td>
<td>14</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>$\text{ENOB}_{1\text{mVpp}}$ [b]**</td>
<td>3.17</td>
<td>5.52</td>
<td>3.03</td>
<td>2.03</td>
<td>3.36</td>
<td>3.36</td>
</tr>
<tr>
<td>Power</td>
<td>52uW</td>
<td>7uW</td>
<td>20mW</td>
<td>910uW</td>
<td>34uW</td>
<td>34.8uW</td>
</tr>
<tr>
<td>FoM @ F_{in} [pJ/Conv]***</td>
<td>683 @ 900Hz</td>
<td>380 @ 3Hz</td>
<td>81.4 @ 4.15MHz</td>
<td>66.6 @ 500kHz</td>
<td>1252 @ 300Hz</td>
<td>424 @ 175Hz</td>
</tr>
<tr>
<td>Chip Area [mm2]</td>
<td>0.046</td>
<td>2.16</td>
<td>1.3</td>
<td>0.04</td>
<td>0.096</td>
<td>0.0564</td>
</tr>
<tr>
<td>Area/Ch [mm2] (Relative)</td>
<td>0.0094 (1x)</td>
<td>0.135 (14.5x)</td>
<td>1.3 (138x)</td>
<td>0.04 (4.3x)</td>
<td>0.078 (8.3x)</td>
<td>0.0564 (5.9x)</td>
</tr>
<tr>
<td>Experiment</td>
<td>In-vivo</td>
<td>In-vitro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Input Amplitude at SNDR=0dB, 0dBFS=1.2V **Reported at $V_{\text{in}}=1\text{mV}_{pp}$ ***FoM =Power/(2*BW*2$^{\text{ENOB}}$)

Die Photo

- All passives on-chip
- 0.0094mm2/channel
- 0.046mm2 Total area
Conclusions

- Beat Frequency ADC for Intra Electrode Neural Recording proposed
- Fully integrated- no off-chip passives
- Low channel area 0.0094mm2
- 20.9dB SNDR @ 1mV$_{pp}$ input
- *In-vivo* experiment supports efficacy

This research was supported in part by NSF IGERT grant DGE-1069104 and NIH grant NS 18338.