A 104.8TOPS/W One-Shot Time-Based Neuromorphic Chip Employing Dynamic Threshold Error Correction in 65nm

Luke Everson, Muqing Liu, Nakul Pande, Chris Kim

Department of Electrical & Computer Engineering Univ. of Minnesota, Minnesota, USA

Outline

- Motivation
- Time Based Neural Network
- DTEC- Dynamic Threshold Error Correction
- Measurement results
- Conclusion

Motivation

Motivation

Motivation

- + Low area and power via subthreshold operation
- Sensitive to noise and PVT

IBM TrueNorth (Digital neurons)^[2]

- + Robust to PVT
- + Technology scaling
- Large area overhead

STT-MRAM(Emerging neurons)^[3]

- + Compact, low write energy, scalable
- Beginning early production

Time-Based Neuron

Advantages of time-based circuits:

- Compact area
- Low power consumption
- MAC is intrinsic to structure
- High precision tunability

Advantages of digital arithmetic:

- Binary Representation
- Less "buy-in" required
- Existing IP for rapid SoC development
- No calibration

Top Level Schematic

Pixel Unit Detail

Complex Tristate

Phase Detector Detail

A-SSCC 2018

A-SSCC 2018 DTEC- Dynamic Threshold Error Correction

A-SSCC 2018 DTEC- Dynamic Threshold Error Correction

- DTEC applied to MNIST Application
 - Single Layer
 - 3b Weights
 - 11x11 image
- Trained with Tensorflow
- Coarse 69.8% Accuracy
- 26% Ambiguous
- 1st Fine DTEC 46% recovered
- 2nd Fine DTEC 37% recovered
- Total Accuracy- 82%
- DTEC Overhead 41%/image for 89% error recovery

Multi-Layer Dataflow

A-SSCC 2018 Handwritten Digit Recognition

- Application Handwritten digit recognition
- Training Network Single Layer & MLP
- Learning Method Supervised Learning
- Input database MNIST

Classifier Networks

A-SSCC 2018

Measurement Results

A-SSCC 2018

Die Photo

772um				
WLCONTROL		100		
B3400 B3400 B050 B050 B050 B050 B050 B050 B050 B	BL CONTROL	A MANANA	Process Core Area VDD # of Neurons # of Synapses Throughput Power Energy/SOP	65nm LP CMOS 0.644mm ² 0.7-1.4V 64 8256 (8K) 1.7Gpixels/s/DD 47.1uW/DLL 27.6fJ
OUTPUT REGISTER				
		-		

Comparison Table

	This	Work	A-SSCC'16 [1]	CICC'17 [2]	ISSCC'17 [3]	ISSCC'17 [4]	ISSCC'16 [5]	ISSCC'16[6]	Science'14[7]
Chip Architecture	Time-Based		Time-Based	Time-Based	Digital	Digital	Digital	Sw. Cap	Digital
Algorithm Target	FCDNN & CNN		FCDNN & CNN	FCDNN & CNN	FCDNN & CNN	FCDNN & FFT	CNN	CNN & SGD	FCDNN & CNN
Technology [nm]	65		65	65	28 FDSOI	40	65	40	28
Chip Area [mm ²]	0.644		3.61	0.24	1.87	7.1	12.25	0.012	430
Precision* [b]	[B,T,2,3]		В	3	[4-16]	[6-32]	16	3	[B,T]
On-Chip SRAM [kB]	8.06		20	3	144	270	181.5	[-]	256MB
VDD [V]	1.2 (Nom.)	0.7 (E _{MAx})	1	1.2	0.6	0.65	0.82	1	0.85
Frequency [MHz]	1700	285	23041	792	200	19.3	250	1000	0.001
Energy Efficiency** [TSop/s/W]	36.2	52.4	48.2	2.47	5.0	0.19	.18	3.86	0.04
Hardware Efficiency [GE/PE][1]	38.4		76.5	33.2	7456	18269	50637	288	6.5

*B=Binary, T=Ternary

**Synaptic Op=MAC

Conclusions

- Time-Based Neuromorphic Core in 65nm LP CMOS

 64 DDLs with 129 stages, 1 shared reference
- One-shot evaluation drives high energy efficiency
- Introduced DTEC to recover ambiguous predictions
- Evaluated on MNIST dataset and achieves ~1% difference in software accuracy
- 104.8TOp/S/W @ 0.7V with 3b = 19.1fJ/MAC