Soft Response Generation and Thresholding Strategies for Linear and Feed-Forward MUX PUFs

Chen Zhou, Saroj Satapathy, Yingjie Lao, Keshab K. Parhi and Chris H. Kim

Department of ECE University of Minnesota

International Symposium on Low Power Electronics and Design

Outline

- Physical Unclonable Function (PUF)
- 32nm PUF Chip Measurements
- Soft Response Thresholding Strategies
- Linear PUF vs. Feed-forward PUF
- Conclusion

Physical Unclonable Function (PUF)

- Unique and random: **Based on inherent** process variation
- Secure: Large # of challenge-response pairs (CRPs)

Unique and random responses

- Server-user based authentication
- Challenge-response pairs tested and stored before usage

• Public chip ID is first sent to the server

• Server retrieves CRP subset table for the given chip ID

• Challenges are sent to the user

• User generates responses using PUF circuit

• User responses are sent to server for comparison

- Approved if responses match; denied if mismatch
- Final step: decision sent to user

Hamming Distance (HD) Calculation

- Hamming distance can be used as matching criteria
- Intra-chip HD: Same chip, noise effects, close to 0%
- Inter-chip HD: Different chip, process variation effects, close to 50%

Outline

- Physical Unclonable Function (PUF)
- 32nm PUF Chip Measurements
- Soft Response Thresholding Strategies
- Linear PUF vs. Feed-forward PUF
- Conclusion

Motivation of This Work

- Stable CRPs have less intra-chip variation
- Measure soft response (=probability of response being '1' or '0') to find stable CRPs

Actual case (only stable CRPs)

Contributions of This Work

- Implemented soft response collection circuits in a 32nm test chip
- Generated MUX PUF soft response distribution based on 3.3 Gb test data
- Proposed soft response thresholding strategies to select stable challenge-response pairs
- Implemented and characterized feed-forward MUX PUF

Proposed Soft Response Measurement Circuit

- Soft response = response probability information
- >GHz sampling circuits facilitate efficient soft response measurements

Linear MUX PUF Delay Stages

- Parallel or crossed signal paths configured by challenge bits
- Delay difference determined by inherent process variation

Arbiter Circuit

 Arbiter generates response bit based on delay difference

32nm PUF Test Chip

Soft Response Measurements

- Soft response is a function of the actual delay difference
- Above distribution generated using 3.3 Gb of PUF response data

Outline

- Physical Unclonable Function (PUF)
- 32nm PUF Chip Measurements
- Soft Response Thresholding Strategies
- Linear PUF vs. Feed-forward PUF
- Conclusion

Soft Response Thresholding Strategy

- Symmetric thresholds used to define stable and unstable CRPs
- Unstable CRPs not used for authentication

Impact of Soft Response (SR) Threshold

- Left: HD distributions overlap when threshold=0.5
- Right: No overlap when threshold=0 and 1 (i.e. only stable responses are used)

Fixed Threshold Scheme

- No stable '1' to stable '0' flips when threshold > 0.81
- Stable '1' to 'unstable' flips always exist, necessitating more tests to find stable CRPs

Relaxed Threshold Scheme

- Stringent threshold during enrollment phase and relaxed threshold during authentication
- Results in fewer '1' \rightarrow 'unstable' and '0' \rightarrow 'unstable' flips

Outline

- Physical Unclonable Function (PUF)
- 32nm PUF Chip Measurements
- Soft Response Thresholding Strategies
- Linear PUF vs. Feed-forward PUF
- Conclusion

Linear MUX PUF Vulnerability

- Linear PUFs are susceptible to modelling attack
- That is, attacker can predict correct response with very high probability using past CRP data

Feed-forward MUX PUF for Improved Security

- Use intermediate response for some challenge bits
- Non-linear relationship between delay and response
 → harder for attacker to predict correct response
- No experimental data reported on feed-forward PUF

32nm Test Chip Data: Linear vs. Feedforward MUX PUF

 % of stable CRPs decreases from 94.16% to 91.02% due to instability of internal challenge bit

Conclusion

- Soft response measurement circuit demonstrated in a 32nm test chip
 - On-chip VCO and counters enable fast measurement
- Different thresholding strategies evaluated
 - Enables robust authentication across wider voltage and temperature range
- Feed-forward MUX measured for the first time
 - % of stable CRPs decreases slightly due to instability of internal challenge bit

Acknowledgements

• National Science Foundation and Semiconductor Research Corporation for funding