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ABSTRACT  

In this work, we present probability based response generation 
schemes for MUX based Physical Unclonable Functions (PUFs). 
Compared to previous implementations where temporal majority 
voting (TMV) based on limited samples and coarse criteria was 
utilized to determine final responses, our design can collect soft 

responses with detailed probability information using simple on-
chip circuits. Thresholds with fine accuracy are applied to 
efficiently distinguish stable and unstable challenge response pairs 
(CRPs). A 32nm test chip including both linear and feed-forward 
MUX PUFs was implemented for concept verification. Based on a 
detailed analysis of the hardware data, we propose several 
enhanced thresholding strategies for determining stable CRPs. For 
instance, a stringent threshold can be imposed in enrollment phase 

for selecting good CRPs, while a relaxed threshold can be used 
during normal authentication phase. Experimental data shows a 
high degree of uniqueness and randomness in the PUF responses 
which can be attributed to the carefully optimized circuit layout. 
Finally, output characteristic of a feed-forward MUX PUF was 
compared to that of a standard linear MUX PUF from the same 
32nm chip. 

CCS Concepts 

•Hardware➝Application specific integrated circuits •Security 

and privacy➝Hardware security implementation. 
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1. INTRODUCTION 
Physical unclonable function or PUF has been widely accepted as 

a promising approach for ensuring secure hardware access. For a 
given bit sequence called challenge, PUF generates a response 
based on the inherent process variation of the chip. Fig. 1 shows a 
typical PUF based authentication process [1-3]. During the chip 
enrollment phase, a large set of challenge response pairs (CRPs) is 
measured from each fabricated chip and stored on a secure server. 
During the authentication phase, the server receives an 
authentication request along with the chip ID from the user, and 
then it selects random challenges from its database. Next, these 

challenges are sent to the user, and the responses for the given 
challenges are sent back to the server. The user is granted access to 

the hardware only when the responses from the chip match the 

responses stored on the server.  
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Figure 1. Typical authentication procedure based on chip ID 

and PUF. 

Hamming distance

P
D

F

0.5

Intra-chip

Inter-chip

1.00.0

Ideal authentication condition

margin>0

Hamming distance
0.5

Intra-chip

Inter-chip

1.00.0

margin<0

Real authentication condition

P
D

F

 
Figure 2. Intra-chip and inter-chip Hamming distance under 

ideal condition (left) and real condition with thermal noise and 

device aging (right). 

PUFs may not always return the same response for a given 
challenge due to thermal noise, aging, supply voltage and 
temperature variation. To overcome this fundamental limitation, 

Hamming distance between different tests or different PUFs can be 
utilized during the authentication phase, as shown in Fig. 2. Intra-
chip Hamming distance represents the repeatability of PUF 
responses between different tests. Inter-chip Hamming distance on 
the other hand, indicates the uniqueness of PUF responses between 
different PUFs. Authentication is approved if the Hamming 
distance between server database and user responses falls within an 
acceptable range, and denied if it is too large compared to the intra-

chip Hamming distance. A larger margin between the two 
Hamming distance distributions makes this method more effective 
and tolerant against various noise effects. However, under realistic 
conditions, intra-chip Hamming distance could overlap with the 
inter-chip hamming distance due to test condition variation, as 
shown in Fig. 2 (right). 

2. CONTRIBUTION OF THIS WORK 
Temporal majority voting (TMV) was proposed to address the 
response instability problem where the PUF response is read out 
multiple times and the majority value is taken as the final PUF 
response [4-6]. However, the limited PUF data and the fixed 50% 
criteria used in prior work results in a large number of incorrect 
responses. To overcome this limitation, we propose authentication 
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strategies based on soft responses and improved thresholding. A 
soft response is defined as the probability of a response being ‘1’ 
for a given challenge. Its value is derived from 100K repetitive PUF 
measurements for each challenge using fast on-chip sampling 
circuits. For instance, if the response output is ‘1’ for 99K out of 

100K measurements, the corresponding soft response value is 0.99. 
Compared with the previous TMV scheme, our results based on a 
massive number of samples provide more insight into the detailed 
PUF operation. To generate the binary response from the soft 
response, we apply probability thresholds to classify the response 
bits into one of three categories: stable ‘0’, stable ‘1’ or unstable. 
Adjustable thresholds are used in our work which is different from 
previous TMV schemes. Our experimental results show that by 

selecting the stable CRPs based on soft responses, the PUFs can 
work reliably under a wider range of VDD and temperature. 
Vulnerability to modelling attacks is a weakness of standard MUX 
based PUFs. To overcome this concern, a feed-forward path 
structure was proposed in [7]. We present data for both linear MUX 
PUF and feed-forward MUX PUF fabricated in the same 32nm test 
chip.  

3. SOFT RESPONSE COLLECTION 
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Figure 3. Proposed MUX based PUF design utilizing an on-chip 

voltage controlled oscillator circuit and counters to efficiently 

collect soft response. 

The traditional PUF evaluation process is as follows: 1) challenge 
bits 𝑐1~𝑐32  are applied; 2) a rising edge is fed to two paths 

simultaneously; 3) the SR latch based arbiter generates a response 
bit output based on the delay difference. Fig. 3 shows the proposed 
PUF design which can collect massive PUF data using an on-chip 
voltage controlled oscillator running at gigahertz frequencies. The 
basic idea is to measure the probability of the response being ‘1’ or 

‘0’ using an on-chip counter which counts the arbiter outputs, and 
compare the value with the total number of VCO cycles. The ratio 
between the two count values is the probability of the response 
being ‘0’. The probability of response being ‘1’, denoted as 
𝑃𝑟(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = ′1′) , is also available based on the equation: 

𝑃𝑟(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = ′1′) = 1 − 𝑃𝑟(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = ′0′) . Unlike the 

traditional response which can only be ‘1’ or ‘0’, 𝑃𝑟(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
′1′) could vary from 0% to 100%, and is defined as soft response. 

Fig. 4 shows how soft response is affected by the process corner. 
Challenges that induce strong positive bias or strong negative bias 
in the final delay difference produces less instability, resulting in 
soft response close to 0% or 100%. Challenges that create a weak 
delay difference bias lead to soft response between 0% and 100%. 

These CRPs are responsible for PUF intra-die variation. Using soft 
response and comparing it with a threshold, we can classify CRPs 

into three categories: stable ‘0’, stable ‘1’, and unstable. Only stable 
bits will be used by the server for authentication application. The 
advantage of this strategy is explained in further detail in following 
section. 
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Figure 4. Output statistics reveal process variation under given 

challenge. Soft response behaviors for challenges inducing (a) 

strong negative, (b) weak negative, (c) weak positive and (d) 

strong positive biases. 

4. PUF MEASUREMENT RESULTS 
This section shows that various aspects of the linear MUX arbiter 
PUF fabricated in 32nm including soft response characteristics, 
reliability, uniqueness, Hamming distance margin, flexible 
threshold strategies, and randomness. 

4.1 Soft response characteristics 
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Figure 5. Measured soft response (i.e. probability of response 

being ‘1’) distribution of standard MUX PUF in linear (upper 

figure) and semi-log (lower figure) scales. The threshold used 

for defining unstable and stable responses can be adjusted 

based on the reliability and security requirements. 



Fig. 5 shows the soft response distribution for a single PUF in both 
linear and log scale. 33,000 CRPs are tested and each CRP is tested 
repeatedly 100K times using the on-chip sampling circuits. The 
CRPs are labeled as stable ‘0’ or stable ‘1’or unstable, based on the 
soft response. For example, in Fig. 5, 0.8 is chosen as the threshold 

for stable ‘1’. For simplicity, the symmetric value of 0.2 is chosen 
as the threshold for stable ‘0’. Under these conditions, the 
percentages of stable ‘1’, stable ‘0’, and unstable bits are 45.92%, 
48.24% and 5.84%, respectively. The combined probability of 
stable ‘0’ and ‘1’ bits is 94.16%, meaning that the majority of 
challenges lead to relatively stable responses.  

4.2 PUF reliability and uniqueness versus 

threshold 

The method we used for calculating Hamming distance in the 
presence of unstable responses is given in Fig. 6. CRPs with 

unstable response are discarded. Then additional CRPs are utilized 
to replace the discard ones to ensure the comparison length is 
constant for all tests. This method works for both intra-chip and 
inter-chip Hamming distance calculation. Ideally, the intra-chip 
Hamming distance is zero, and the inter-chip Hamming distance 
distribution on a large set of PUFs has a mean value of 0.5.  

Fig. 7 shows the Hamming distance distributions for different 
threshold values. Test conditions were varied as follows: 0.8~1.0V 

for VDD and 25~85ºC for temperature. Three different threshold 
values were considered for stable ‘1’: 0.50, 0.85 and 1.00. 
Symmetric values were used for the stable ‘0’ threshold to simplify 
the analysis. The inter-chip Hamming distance distribution is close 
to ideal and hardly changed, suggesting a symmetric layout design 
and weak correlation between threshold value and uniqueness.  
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Figure 6. Hamming distance calculation utilizing only the 

stable CRPs. 

When the threshold is set to 0.5, no CRP is considered to be 
unstable. As shown in the Fig. 7 (top), the margin between intra-
chip and inter-chip Hamming distance distributions is negative 
0.0625, meaning that the two distributions overlap. Please note that 
the traditional one time sampling method will result in an overlap 
even larger than Fig. 7 (top) because of the small sample size. Fig. 

7 (middle) shows results when the threshold is 0.85. Only responses 
with a probability value greater than 0.85 or less than 0.15 are used 
for authentication purposes. As a result, the average and sigma 
values of intra-chip Hamming distance are both 14% of those when 
threshold is 0.5. The distribution margin increases to positive 
0.0157. Furthermore, when the threshold value is set to 1, meaning 
only absolute stable responses are accepted, the intra-chip 
Hamming distance average and sigma values are only 0.16% and 

0.084% of those when threshold is 0.5, respectively. Therefore, the 
distribution margin is now positive 0.0625, which guarantees the 
success of authentication. Table 1 shows the margin between the 
two distributions as well as the percentage of stable ‘0’ and ‘1’ bits 
for different thresholds. A threshold greater than 0.85 will result in 

no overlap between the two distributions and more than 81.15% of 
the responses being stable ‘0’ or stable ‘1’. During enrollment 
phase, each PUF is tested under a nominal VDD and temperature 
condition. Only the CRPs with a soft response value greater than 
0.85 (or less than 0.15) are stored on the server and utilized for 

future authentication purposes. Since those stable CRPs will have 
a lower probability of becoming the opposite stable value, we can 
generate more reliable PUF responses in the presence of PVT 
variation and aging. 

VDD: 0.8~1.0V (normal: 0.9V)   32nm Temp.: 25~85ºC
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Figure 7. Intra-chip and inter-chip Hamming distance 

distributions in linear scale (left column) and semi-log scale 

(right column), under different threshold values. 

Table 1. Stable CRPs selection and intra/inter-chip Hamming 

distance distribution gap versus threshold (0.8~1.0V, 25~85ºC) 
Threshold for 

‘1’/‘0’  

In 10,000 random CRPs Margin between 

distributions (norm., 

64 CRPs) 
% of stable 

‘0’ 

% of stable 

‘1’ 

0.50 / 0.50 51.18% 48.85% -0.0625 (overlap) 

0.55 / 0.45 50.74% 48.42% -0.0469 (overlap) 

0.60 / 0.40 50.31% 48.00% -0.0469 (overlap) 

0.65 / 0.35 49.80% 47.56% -0.0313 (overlap) 

0.70 / 0.30 49.36% 47.03% -0.0469 (overlap) 

0.75 / 0.25 48.83% 46.52% -0.0469 (overlap) 

0.80 / 0.20 48.24% 45.92% -0.0313 (overlap) 

0.85 / 0.15 47.55% 45.30% 0.0157 (no overlap) 

0.90 / 0.10 46.61% 44.45% 0.0313 (no overlap) 

0.95 / 0.05 45.32% 43.15% 0.0625 (no overlap) 

1.00 / 0.00 41.50% 39.65% 0.0625 (no overlap) 

4.3 Enhanced thresholding strategies 
In the previous section, we have shown that PUF responses can be 
made more reliable by utilizing a soft response. It is worth noting 
though that some stable challenges may inevitably become unstable 



challenges regardless of what the threshold value is. Consider a 
scenario in which a CRP has a soft response of 0.81 during 
enrollment phase and a threshold of 0.80 is chosen. During 
authentication, the soft response for the same challenge might 
change to 0.79 due to thermal noise, and hence discarded as shown 

in Fig. 8(a). For the authentication scheme in Fig. 6, a new CRP 
will have to be found to replace this unstable CRP. The latency and 
energy overhead are proportional to the number of CRPs that need 
to be replaced. However, the extra workload involved in testing a 
new CRP could be saved if the authentication process allows the 
soft response to marginally cross over the threshold line (i.e., 0.79 
is still considered as stable in authentication). It is a reasonable 
compromise since 0.79 is quite close to the original soft response 

0.81. To implement this tolerance, we can use relaxed thresholds in 
authentication, as shown in Fig. 8(b). Please note that the stable-to-
unstable flips cannot be completely avoided by employing a more 
stringent threshold. For instance, even if a particular challenge 
generates a soft response of 1.0 in enrollment phase, it is still 
possible for the soft response to become 0.99 in authentication 
phase. 
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Figure 8. Comparison between (a) fixed threshold and (b) 

relaxed threshold schemes. The latter approach uses a relaxed 

threshold during authentication to minimize the number of 

stable-to-unstable flips.  

95

100

0

5

Enroll.: stable'1'

P
ro

b
a

b
il

it
y
 (

%
) Pr(Auth.: stable'1' | Enroll.: stable'1')

Pr(Auth.: unstable | Enroll.: stable'1')

Pr(Auth.: stable'0' | Enroll.: stable'1')

Threshold for '1'

Enrollment: 0.9V, 25ºC 

Authentication: 1.0V, 85ºC100K VCO cycles

0.5 0.6 0.7 0.8 0.9 1.0

1 PUF, 1000 CRPs

 

Threshold for '1'

P
ro

b
a

b
il

it
y
 (

%
)

Pr(Auth.: stable'0' | Enroll.: stable'0')

Pr(Auth.: unstable | Enroll.: stable'0')

Pr(Auth.: stable'1' | Enroll.: stable'0')

Enrollment: 0.9V, 25ºC 

Authentication: 1.0V, 85ºC

0.5 0.6 0.7 0.8 0.9 1.0

Enroll.: stable'0'

95

100

0

5

100K VCO cycles

1 PUF, 1000 CRPs

 
Figure 9. Conditional probabilities of correct, unstable, and 

incorrect responses for different threshold values.  Stable ‘1’-

to-stable ‘0’ flips and stable ‘0’-to-stable ‘1’ flips can be 

eliminated with a higher threshold, while stable-to-unstable 

flips cannot be completely eliminated.  

To illustrate how this strategy can benefit the authentication 
process, we use data measured at 0.9V, 25ºC to represent the 

enrollment phase data, and data measured at 1.0V (higher VDD), 
85ºC (higher temperature) to represent the authentication phase 
data. Fig. 9 shows the PUF response flip probabilities if same 
thresholds are used in enrollment and authentication. For 
enrollment response to be either stable ‘1’ or stable ‘0’, three flip 

probabilities are shown: stable-to-stable, stable-to-unstable and 
stable-to-opposite-stable. Out of all the CRPs deemed stable by the 
enrollment test, more than 93% are still stable during authentication 
test. By choosing a threshold greater than 0.82, all stable ‘1’-to-
stable ‘0’ flips and stable ‘0’-to-stable ‘1’ flips can be eliminated, 
indicating that a threshold larger than 0.82 is a reasonable choice 
for enrollment. However, stable-to-unstable flips cannot be 
completely eliminated unless the threshold is set to 0.5, which isn’t 

practical. Then the relaxed threshold in authentication strategy is 
applied on the same data set. Fig. 10 shows the combined stable-to-
unstable flip (both ‘0’-to-unstable and ‘1’-to-unstable) probability 
when sweeping the enrollment threshold and authentication 
threshold. The results are plotted in Fig. 10, in 3D and 2D formats. 
As the authentication threshold is relaxed (i.e., lowered for ‘1’), the 
conditional probability drops. For example, if the enrollment test 
threshold is 0.9, the conditional probability is 0.9% when the 

authentication test threshold is 0.7, compared with 3.7% when 0.9 
is still chosen for authentication. The authentication efficiency is 
improved by employing a relaxed threshold. However, an over-
relaxed threshold could make it easier for the attacker to hack the 
PUF. Therefore, to ensure high PUF security, the threshold value 
must be chosen carefully. 
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4.4 PUF randomness 
Randomness is another important metric for PUFs since a random 

PUF response is harder to predict. Strong biases should not be 
exhibited in the responses under randomly chosen challenges as 
this info can be used by the attacker to predict the responses, 
rendering the PUF ineffective. The number of ‘1’s (or ‘0’s) for 
randomly chosen responses is usually counted to check a PUF’s 
randomness. Ideally, the percentage of ‘1’s or ‘0’s should be close 
to 50%, since this will allow the maximum number response 

combinations, i.e., ( 𝑛
𝑛/2

) =
𝑛!

𝑛
2⁄ !𝑛 2⁄ !

, where 𝑛 is the total number of 

CRPs. This makes it more difficult for the attacker to predict the 
correct response value. However, in the presence of process 
variation, randomness of a PUF usually follows a normal 
distribution. Fig. 11 shows the randomness distribution of 576 
PUFs measured from 6 chips. Unstable responses that fall outside 
of the stable zone were discarded. We did not observe any obvious 
chip to chip variation in the randomness data. 
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Figure 11. Measured randomness of MUX PUF 

5. COMPARISON OF LINEAR AND FEED-

FORWARD MUX PUF 

This section introduces the feed-forward PUF that was also 
implemented in the same chip, along with modeling attack results 
on both the linear PUF and feed-forward PUF. We also compare 
the stability of the two PUF designs. 

5.1 Linear PUF Modeling attacks  

PUFs are expected to be resistant against modelling attacks. 
However, it has been shown that a machine learning based 
approach can predict all CRPs with a high success rate using a 
subset of the CRPs as training data. Linear MUX PUF is 
particularly vulnerable to modelling attacks due to the linear 
relationship between the input challenge and output response. We 
employ an additive linear delay model [8, 9] for testing modelling 
attack on our linear MUX PUF.  

𝐶 =

[
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                                                           1]

 
 
 
 
𝑇

   𝑊 =
1

2

[
 
 
 
 

                    𝛿1
0 − 𝛿1

1

𝛿1
0 + 𝛿1

1 + 𝛿2
0 − 𝛿2

1

⋮
𝛿31

0 + 𝛿31
1 + 𝛿32

0 − 𝛿32
1

𝛿32
0 + 𝛿32

1 + 𝑏               ]
 
 
 
 

  

∆ = 𝐶 ∙ 𝑊           𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = (𝑠𝑖𝑔𝑛(∆) + 1)/2 

Here, 𝐶 is the input vector that is constructed by all challenge bits. 

𝑊  is the lumped stage delay vector decided by the fabricated 

circuits. 𝛿𝑖
0  and 𝛿𝑖

1  denote the stage delay difference of stage #i 

when challenge bit is either ‘0’ or ‘1’. 𝑏 is the process induced bias 

in the arbiter. Path delay difference ∆ is the dot product of 𝐶 and 

𝑊. The final 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is decided by the sign of ∆. The Logistic 

Regression approach in [10] is applied on the PUF hardware data 
to validate the results in previous literature. 5000 stable CRPs were 

collected from the same PUF. Training sets with different sizes 
were tried in the experiments, and the same 1000 CRPs serve as the 
test set. The average prediction rates and training time with 
different train set sizes are given in Table 2. The results indicate 
that using a very limited training set and short training time, the 

model can predict the remaining CRPs with a prediction rate higher 
than 99%. This confirms the vulnerability of linear MUX PUFs 
against modeling attacks based on real hardware data.  

Table 2. Modelling attack results on linear PUF measurement 
data using the Logistic Regression approach [10] 

Train set 

size 

Test set 

size 

Average 

prediction rate 

Average training 

time (ms) 

50 1000 85.3% 0.60 

100 1000 91.9% 0.76 

200 1000 94.9% 0.83 

500 1000 98.8% 1.92 

2000 1000 99.9% 7.93 

4000 1000 100% 17.2 

5.2 Feed-forward PUF 
To overcome the vulnerability of linear MUX arbiter PUF against 
modelling attacks, the feed-forward MUX PUF concept was 
proposed in [7]. The basic idea is to introduce nonlinearity in the 
PUF path delay by generating some of the challenge bits using the 
internal stage responses. Fig. 12 shows a simple feed-forward path 
structure that was implemented in the same 32nm test chip. An 
extra SR latch arbiter measures the delay difference of the first 16 
stages. The arbiter result is then utilized as the challenge bit of stage 
#26. This challenge bit unknown to the external world is the source 

of the nonlinear relationship between PUF challenge and response 
which makes the additive linear delay model ineffective. Advanced 
machine learning approaches such as Evolution Strategies [8] have 
been employed to build accurate models for feed-forward PUFs. 
However, they require a significantly larger training set and a 
longer training time. In this work, we utilized an artificial neural 
network based approach [10] to train the PUF model using the 
collected chip data. The modelling attack results are summarized in 

Table 3. As shown in previous works [8], the training process is 
less accurate and less efficient as compared to that of a linear PUF. 
This indicates that feed-forward PUFs are less vulnerable to 
modelling attacks. 

Table 3. Modelling attack results on feed-forward PUF 
measurement data using artificial neural networks [10] 

Train set 

size 

Test set 

size 

Average 

prediction rate 

Average training 

time (ms) 

1000 1000 56.4% 39 

2000 1000 66.5% 127 

4000 1000 82.6% 343 

8000 1000 94.2% 1051 

Hardware data in Fig. 13 (upper) shows that for a threshold of 0.8, 
the probability of the response being stable reduces from 94.16% 

for a linear PUF to 91.02% for a feed-forward PUF. The small 
decrease in the percentage of stable responses can be attributed to 
the instability in the internally generated challenge bit c26. This can 
be seen in Fig. 13 (lower) where the distribution of the delay 
difference of stage #26 can get distorted as a result of the internal 
challenge bit. This explanation is consistent with previous 
modelling analysis work [11]. Please note that for design 
simplicity, we implemented a feed-forward PUF with just a single 

feed-forward path, which makes it marginally more difficult to 
build PUF models. More complicated feed-forward PUFs with 
multiple feed-forward paths have been proposed [8, 11], aiming at 
further improving the security. Care must be taken when designing 



such PUFs since the percentage of unstable responses may increase 
due to multiple internal challenge bits, and maintaining a perfectly 
symmetric layout between the two signal paths might be difficult.  
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Figure 12. Example of a feed-forward MUX PUF for improved 

security [7]. 

stage #16

c16 SR

Latch

S Q

R

c26

stage #26

PDF

Δ16 

Pr

0 1

c26

Δ25 Δ26 

PDF PDF

Split PDF due to 

instability in C26

32nm, 0.9V, 25ºC, 33,000 CRPs, 

100K VCO cycles per challenge

Soft response

P
ro

b
a
b

il
it

y
 (

%
)

0 0.2 0.4 0.6 0.8 1
10

10

10

10

10

-2

-1

0

1

2

Pr(stable '1'&'0', linear) = 94.16%

Pr(stable '1'&'0', feed-forward) = 91.02%

Threshold ('0') 

= 0.2

Threshold ('1') = 

0.8

stable '1'stable '0' unstable

 
Figure 13. Measured output response probability shows a slight 

increase in the number of unstable responses for the feed-

forward MUX PUF compared to linear MUX PUF. 

6. CONCLUSION 
In this work, we present soft response generation and thresholding 
strategies to improve MUX PUF reliability. Their effectiveness is 
verified through extensive hardware data from linear and feed-

forward MUX delay based arbiter PUFs implemented in a 32nm 
test chip. Our design implements 32 stages MUX PUF with 
~4.3×109 challenge choices. In our authentication application test, 

64 CRPs are used, which can distinguish ~1.8×1019 PUFs at most. 

An on-chip VCO and counters operating at >1GHz frequencies 
facilitate the measurements of soft response. Test results show 
>94.16% stability, low inter-chip correlation and high degree of 
randomness. Flexible probability threshold strategies for assuring a 
robust authentication were discussed. Measured data from feed-
forward PUFs implemented in the same chip shows a modest 
increase in the number of unstable response bits compared to 

standard MUX PUFs. The die photo and chip feature summary are 
shown in Fig. 14. 
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Figure 14. 32nm chip microphotograph and summary table.  

7. ACKNOWLEDGEMENTS 
This research has been supported by the National Science 
Foundation under grant number CNS-1441639 and the 
semiconductor research corporation under contract number 2014-
TS-2560.  

8. REFERENCES 
[1] Herder, C., Yu, M., Koushanfar, F., and Devadas, S. 2014. 

Physical Unclonable Functions and Applications: A Tutorial. 
Proceedings of the IEEE, 1126-1141.  

[2] Bohm, C. and Hofer, M. 2013. Physical Unclonable Functions 
in Theory and Practice. Springer, 57-68, 87. 

[3] Yang, K., Dong, Q., Blaauw, D., and Sylvester, D. 2015. A 
physically unclonable function with BER <10−8 for robust 

chip authentication using oscillator collapse in 40nm CMOS. 
International IEEE Solid-State Circuits Conference, 1-3.  

[4] Mathew, S. K., Satpathy, S. K., Anders, M. A., et al. 2014. A 
0.19pJ/b PVT-variation-tolerant hybrid physically unclonable 
function circuit for 100% stable secure key generation in 
22nm CMOS. In IEEE International Solid-State Circuits 
Conference, 278-279.  

[5] Alvarez, A., Zhao, W., Alioto, M. 2015. 15fJ/b static 

physically unclonable functions for secure chip identification 
with <2% native bit instability and 140× Inter/Intra PUF 
hamming distance separation in 65nm. In IEEE International 
Solid State Circuits Conference, 1-3.  

[6] Armknecht, F., Maes, R., Sadeghi, A., Sunar, B., and Tuyls, 
P. 2009. Memory leakage-resilient encryption based on 
physically unclonable functions. Springer, 685-702. 

[7] Lee, J. W., Lim, D., Gassend, B., et al. 2004. A technique to 

build a secret key in integrated circuits for identification and 
authentication applications. Symposium on VLSI Circuits, 
176-179.  

[8] Rührmair, U., Sehnke, F., Sölter, J., et al. 2010. Modeling 
attacks on physical unclonable functions. In Proceedings of 
the 17th ACM Conference on Computer and Communications 
Security, 237-249. 

[9] Delvaux, J. and Verbauwhede, I. 2013. Side channel modeling 

attacks on 65nm arbiter PUFs exploiting CMOS device noise. 
IEEE International Symposium on Hardware-Oriented 
Security and Trust, 137-142. 

[10] Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011. 
Scikit-learn: Machine Learning in Python. Journal of Machine 
Learning Research, 2825-2830. 

[11] Lao, Y., Parhi, K. K., 2014. Statistical Analysis of MUX-
Based Physical Unclonable Functions. in Computer-Aided 

Design of Integrated Circuits and Systems, IEEE 
Transactions, 649-662. 


