
Fault-Tolerant Ripple-Carry Binary Adder using

Partial Triple Modular Redundancy (PTMR)

Rahul Parhi

Wayzata High School

Plymouth, MN 55446

Email: parhi003@umn.edu

Chris H. Kim

Department of Electrical and

Computer Engineering

University of Minnesota

Minneapolis, MN 55455

Email: chriskim@umn.edu

Keshab K. Parhi

Department of Electrical and

Computer Engineering

University of Minnesota

Minneapolis, MN 55455

Email: parhi@umn.edu

Abstract—Integrated circuit chips fabricated using nano-scale
CMOS technologies will be prone to errors caused by fluctuations
in threshold voltage, supply voltage, electromigration, random
dopant fluctuations, aging, timing errors and soft errors. Design
of nano-scale failure-resistant systems has drawn significant
interest in past few years. One common approach to reducing
errors is the use of triple modular redundancy (TMR). The hard-
ware overhead associated with TMR is significantly high. This
paper presents a novel partial triple modular redundancy (PTMR)
approach that achieves the same or better fault-tolerance as that
of TMR but with significantly less hardware overhead. In a
weighted number system, the most significant bits carry greater
weight and preserving these bits is more critical than the lower
significant bits. In PTMR, only the P most significant bits of
the result are computed using TMR as opposed to all the W
bits, where W represents the word-length of the operands. The
proposed PTMR approach is illustrated in the context of a ripple-
carry adder. It is shown that the hardware overhead can be
reduced by 75% to 87.5% with P = 4 as the word-length varies
from 16 to 32, with average error power equal to or less than
that of TMR. It is shown that P = 3 or 4 is sufficient for word-
lengths varying from 16 to 32.

I. INTRODUCTION

One common approach to reducing numerical errors due

to faults is the use of triple modular redundancy (TMR) [1].

TMR was first introduced by Von Neumann in 1956 [1]. In

triple modular redundancy, the same function is computed

three times and a majority vote of these outputs is used as

the final output. TMR has been used to design single-event

upset (SEU) tolerant systems using field-programmable gate

arrays (FPGAs) in [2], [3], [4]. Computing the same function

three times requires a significant increase in hardware. One

proposed method to reduce the hardware overhead of TMR

in random logic computations is the use of selective TMR

(STMR) [3][4]. However, no approach has yet been presented

to reduce hardware overhead in TMR based arithmetic com-

puting systems.

This paper addresses the design of arithmetic computing

systems that can achieve the same reliabilty as that of TMR

systems but with significantly less overhead. A novel method

of redundancy, referred to as partial triple modular redun-

dancy (PTMR), is presented in this paper. The underlying

principle of PTMR is to use TMR only for few most significant

bits (MSBs) of the computation instead of computing all the

bits in triplicate. The reasoning behind this approach lies in the

fact that the weights of the MSBs are significantly greater than

that of the lower significant bits (LSBs). In digital computers,

all numbers are represented using a weighted binary number

representation. For example, in a 16-bit unsigned number, the

weight of the MSB is 215 = 32768 while the weight of the

LSB is 20 = 1; thus, the error caused by the flipping of this bit

is 32768 times the error caused by the flipping of the LSB. In

addition, more gates using TMR are likely to fail with higher

probability.

The paper is organized as follows. Section II introduces the

ripple-carry binary adder, and the TMR and PTMR adders.

Section III presents the experimental results of the reliability

and hardware overhead of different adders. Section IV presents

an analysis and discussion of the results.

II. METHODS

The conventional ripple-carry adder of word length W is

built with W one-bit adders. This one-bit adder adds the two

input bits ai and bi with the input carry bit ci. This generates

the sum bit si and output carry ci+1 according to the equations:

gi = aibi (1)

pi = ai ⊕ bi (2)

si = pi ⊕ ci (3)

ci+1 = gi + cipi (4)

The variables gi and pi represent the carry-generate and the

carry-propagate variables, respectively. A ripple-carry adder of

word length W is shown in Fig. 1.

A. TMR and PTMR

Triple modular redundancy (TMR) involves computing in

triplicate followed by a majority vote. The voting circuit

processes three binary inputs and generates one output that

represents the majority of the inputs. The voting circuit im-

plements the logic function:

+

a0b0

s0

+ +

aW-2

. . . . +

a3b3

s3

+

a2b2

s2

+

a1b1

s1

c0 = 0

c1cW c4 c3 c2

cW-2

bW-2aW-1bW-1

cW-1

sW-2sW-1

Fig. 1. A ripple-carry adder (RCA) with word length W . Each block
implements the one-bit binary adder shown in Figure 1.

v = xy + xz + yz (5)

where v is the majority vote of bits x, y, and z.

1) TMR Based RCA (TMR): A commonly used form of

fault-tolerance is through triple modular redundancy. In the

context of a ripple-carry adder, the sum of two binary numbers

of word length W is computed three times and the three

corresponding sum bits are then voted using the vote logic

in (5). This adder is referred to as TMR and is illustrated in

Fig. 2.

+

a0b0

s0

+ +

aW-2

. . . . +

a3b3

+

a2b2

s2

+

a1b1

s1

c0 = 0

c1cW c4 c3 c2

cW-2

bW-2aW-1bW-1

cW-1

sW-2sW-1

+

a0b0

+ +

aW-2

. . . . +

a3b3

s3

+

a2b2

s2

+

a1b1

s1

c0 = 0

c1cW c4 c3 c2

cW-2

bW-2aW-1bW-1

cW-1

sW-2sW-1

+

a0b0

s0

+ +

aW-2

. . . . +

a3b3

s3

+

a2b2

s2

+

a1b1

c0 = 0

c1cW c4 c3 c2

cW-2

bW-2aW-1bW-1

cW-1

sW-2sW-1

s3

s1

s0

VOTE VOTE VOTE VOTE VOTE VOTE

s0s2 s1s3

Fig. 2. A triple modular redundancy based ripple-carry adder (TMR).

2) Partial TMR Based RCA (PTMR): Similar to conven-

tional TMR, this partial TMR based RCA computes the P
MSBs of the sum three times, where P < W . These P bits

are then voted using the voting circuit to compute the P MSBs

of the result. The (W−P) LSBs are computed only once. This

is referred to as PTMR and is illustrated in Fig. 3.

Table I analyzes the number of computational and voting

gates in the three adders: RCA, TMR and PTMR. The over-

head gates represent the overhead due to redundancy. The ratio

r represents the ratio of the number voting gates to the number

of computational gates. The voting gates are likely to fail at

r times the failure rate of the computational gates due to soft

errors. A smaller r implies a smaller probability of failure of

a voting circuit.

+

a0b0

s0

+ +

aW-2

. . . . +

aW-PbW-P

. . . . +

a1b1

s1

c0 = 0

c1cW cW-P+1 c2

cW-2

bW-2aW-1bW-1

cW-1

sW-2sW-1

+ +

aW-2

. . . . +

cW

cW-2

bW-2aW-1bW-1

cW-1

sW-2sW-1

+ +

aW-2

. . . . +

cW

cW-2

bW-2aW-1bW-1

cW-1

sW-2sW-1

sW-P

VOTE VOTE VOTE

s0s1sW-P

aW-PbW-P

cW-P+1

sW-P

aW-PbW-P

cW-P+1

sW-P

Fig. 3. A ripple-carry adder using partial triple modular redundancy (PTMR).

TABLE I
NUMBER OF GATES AND HARDWARE OVERHEAD IN EACH ADDER IN

TERMS OF W AND P

Adder RCA TMR PTMR

of Gates 5W 19W 5W + 14P

of Overhead Gates 0 14W 14P

of Voting Gates 0 4W 4P

of Computational Logic Gates 5W 15W 5W + 10P

Ratio r 0
4

15

4P

5W+10P

B. Fault Simulation

A bit-level simulator was developed to simulate faults at

logic gate level. The failure rate of each logic gate is a pre-

specified parameter that is input to the simulator. If an α–

particle hits the integrated circuit, one or more logic gates will

be affected. The probability that a voting circuit is affected is

significantly less than the computational logic gates, as the

total number of gates for voting circuits is much less than that

of the total computational gates. The failure rate of a voting

gate is r times that of the computational gate. The failure rate

of the entire voting circuit can be shown to be 23qr/8 where

q is the failure rate of each gate. Define R as:

R =
Failure rate of the voting circuit

Failure rate of computational logic gates
=

qv
q

=
23r

8
.

(6)

In this paper, simulation results are presented for R = 0.5
or 0.1. These two values of R do not consider the effect of r.

The simulation results are used to validate the results of the

theoretical analysis (not presented in this paper due to lack

of space). The theoretical analysis is carried out to take into

account the effect of r for each adder and the SER values are

derived. It is important to point out that no prior work has

considered different failure rates for combinational gates and

for voting circuits. Most prior results are based on ideal voting

circuits that never fail. This assumption is very unrealistic.

The addends are random unsigned binary numbers where

each bit is equally likely to be either 0 or 1. The MSB of each

addend is taken to be 0 to avoid overflow. Ten million Monte

Carlo simulations are carried out for each experiment. The

simulator can be executed with five input parameters: word-

length (W), percent failure rate of each computational logic

gate (q), percent failure rate of voting circuit (qv = Rq),

number of MSB bits to compute in triplicate (P), and number

of Monte Carlo simulations (N).

C. Performace Metrics

The performance characteristics of the various adders are

characterized with respect to their errors in addition. Let A and

B represent the two addends, and S represent the correct sum.

The incorrect sum computed by a faulty adder is represented

by Ŝ. Define E as the magnitude of the error in computing

the sum, i.e., E = |S − Ŝ|.

Let the number of Monte Carlo simulations be denoted as

N . The fault-resiliency of a design is measured by the signal

to error power ratio denoted as SER. The SER is defined

as the ratio of the average signal power and the variance of

the magnitude of the error, and is given by:

SER = 10 log

1

N

N∑

j=1

|S(j)|2

1

N

N∑

j=1

|E(j)− E|2
= 10 log

N∑

j=1

|S(j)|2

N∑

j=1

|E(j)− E|2

where E represents the mean of the magnitude of the error,

and E and SER are measured in decibels (dB). The higher

the SER, the more fault-resilient the adder is. The number

of logic gates of each adder design is considered as another

metric.

III. RESULTS

Table II describes the SER for different adder designs for

fault rates of computational logic gates varying from 0.001%
to 5% for 16-bit addition. The ratio, R, of the failure rate of

the voting circuit and the failure rate of a computational logic

gate is assumed to be one-half. The values of P that maximize

the SER for PTMR are noted in Table II.

Table III describes the SER and the number of logic gates

for different PTMR adders as P is varied from 0 to 5 for

fault rates of computational logic gates varying from 0.001%

to 1%. Two different R values are considered: 0.5 and 0.1.

Thus, the failure rates of the voting circuit are either one-half

or one-tenth of the computational logic gates.

Table IV describes the SER values for different adders as

a function of W . The word-length, W , is varied from 16 to

32. In this table, the fault rate of the computational logic is

0.01% and R = 0.5.

TABLE II
SER OF DIFFERENT ADDERS VS. FAULT RATES OF COMBINATIONAL

LOGIC GATES WHERE W = 16 AND R = 0.5

Fault % RCA TMR PTMR

0.001 42.70 52.89 52.60 (P = 5)

0.010 32.83 42.24 42.27 (P = 5)

0.050 25.59 34.73 36.80 (P = 5)

0.100 23.00 31.19 31.32 (P = 5)

0.500 16.52 21.94 22.23 (P = 4)

1.000 13.98 17.65 18.24 (P = 3)

2.000 11.64 13.83 14.42 (P = 2)

3.000 10.29 11.78 12.52 (P = 2)

4.000 9.72 10.43 11.15 (P = 2)

5.000 9.39 9.86 10.43 (P = 2)

TABLE IV
SIGNAL TO ERROR POWER RATIO FOR DIFFERENT ADDERS VS. WORD

LENGTH AT 0.01% FAILURE RATE FOR R = 0.5.

Word Length RCA TMR PTMR

16 32.83 42.24 42.27 (P = 5)

24 32.78 42.39 42.18 (P = 5)

32 32.97 42.21 42.11 (P = 5)

IV. DISCUSSION AND FUTURE WORK

The computational logic gates are assumed to fail at a rate

varying from 0.001% to 5%. For example, a fault rate of

0.001% implies that gates fail at the rate of 10 parts per million

(ppm), i.e., in 10 million Monte Carlo runs, a specific logic

gate flips in about 100 instances on average out of 10 million

instances. Each instance can be thought of as an adder chip,

and thus, 10 million chips for each design are simulated in

this paper. Furthermore, the voting circuit is not assumed to

be ideal in this paper. Two failure rates for the voting circuit

are considered for a specified computation logic gate failure

rate. The failure rates for the voting circuit are assumed to be

one-half and one-tenth of that of the computational logic gate.

From Table II, it is observed that TMR has higher SER
than RCA. However, the improvement in SER due to TMR

varies from about 10 dB for logic gate fault of 0.001% to

about 4 dB at logic gate fault rate of 1%. The advantage of

TMR disappears for logic gate fault rates of 3% or higher.

The performance of PTMR is the same or better than TMR

with a P value of 5 at fault rates in the range of 0.001%

to 0.1%. The PTMR performance is better due to the fact

that it contains fewer gates for the voting circuits than that of

TMR, thus having fewer errors. The observation that PTMR

with P = 3 or 4 performs similar to or better than the TMR

implies that replicating as few as 3–5 MSBs in triplicate is

sufficient to protect the sum and decrease error.

Fig. 4 shows the SER of a 16-bit adder for fault rates of

computational gates varying from 0.001% to 0.1% for two

different values of the ratio R as the parameter P , i.e., the

number of bits triplicated and voted, increases from 0 to 5.

This figure illustrates that for all cases the SER approximately

becomes horizontal at or before P = 4. Furthermore, Table

IV illustrates that the performance of different adders is

independent of word-length as the word-length changes from

TABLE III
THE NUMBER OF LOGIC GATES AND SER FOR DIFFERENT PTMR ADDERS AS A FUNCTION OF P FOR R = 0.5 AND 0.1 AND FOR COMBINATIONAL

LOGIC GATE FAULT RATES VARYING FROM 0.001% TO 1%.

P # Gates
0.001% 0.01% 0.05% 0.1% 0.5% 1%

R = 0.5 R = 0.1 R = 0.5 R = 0.1 R = 0.5 R = 0.1 R = 0.5 R = 0.1 R = 0.5 R = 0.1 R = 0.5 R = 0.1

0 80 42.70 43.15 32.83 32.85 25.96 25.94 23.00 23.01 16.52 16.51 14.25 13.97

1 94 43.89 44.33 34.18 34.58 27.13 27.58 24.22 24.62 17.60 17.98 14.98 15.33

2 108 48.56 50.16 38.48 40.19 31.51 33.04 28.46 29.99 21.15 22.44 17.85 18.94

3 122 50.64 55.20 40.85 44.66 33.85 37.11 30.63 33.65 22.20 24.09 18.24 19.55

4 136 52.30 57.74 41.82 47.17 34.63 39.19 31.16 35.26 22.24 24.17 17.99 19.25

5 150 52.60 59.62 42.27 48.46 34.80 39.69 31.32 35.53 22.12 24.02 17.84 19.00

16 to 32. Thus, PTMR with P = 4 is shown to be the best

design with least hardware overhead and the highest SER for

word lengths at least upto 32 bits.

0 1 2 3 4 5
20

25

30

35

40

45

50

55

60

P

S
E

R
 (

d
B

)

q=10−5, R=0.1

q=10−5, R=0.5

q=10−4, R=0.1

q=10−4, R=0.5

q=10−3, R=0.1

q=10−3, R=0.5

Fig. 4. SER vs. P for different fault rates for PTMR 16-bit adders.

A theoretical statistical analysis was carried out to compute

SER for different adders with actual value of r for each adder

from Table I; however, this analysis is not presented here due

to lack of space. The SER of the PTMR is illustrated in Fig.

5 for q = 10−3, 10−4, and 10−5, for a 16-bit adder. The SER

of the PTMR adder is not a monotonically increasing function

with respect to P , but has a maximum at P = 3 or 4, for very

small q, independent of the word-length W . This proves that a

PTMR adder is always more fault-tolerant than a TMR adder,

while requiring significantly less hardware. This result is non-

intuitive, but can be explained by the fact that more voting

circuits are likely to be at fault with higher probability. Thus,

there exists an optimal value of P . This observation is a key

contribution of this paper.

0 2 4 6 8 10 12 14 16
20

25

30

35

40

45

50

55

P

S
E

R
 (

d
B

)

q=10−5

q=10−4

q=10−3

Fig. 5. SER of 16-bit PTMR adders as a function of P for three different
gate failure rates.

The hardware overheads of the PTMR adder and the TMR

adder are 14P and 14W , respectively. The savings with PTMR

as compared with TMR are given by 1 − P
W

. With P = 4,

these savings are given by 75% and 87.5% for word-lengths

of 16 and 32, respectively.

Future research will be directed towards the application of

PTMR in fast adders such as the Kogge-Stone [5] adder, and

the Wallace-tree multiplier [6].

REFERENCES

[1] J. von Neumann. Probabilistic logics and synthesis of reliable organisms
from unreliable components. In C. E. Shannon and J. McCarthy, editors,
Automata Studies, Automata Studies, pages 43–98. Princeton University
Press, 1956.

[2] H. Quinn, P. Graham, and B. Pratt. An automated approach to estimating
hardness assurance issues in triple-modular redundancy circuits in Xilinx
FPGAs. IEEE Transactions on Nuclear Science, 55(6):3070–3076,
December 2008.

[3] P. K. Samudrala, J. Ramos, and S. Katkoori. Selective triple modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis
for FPGAs. IEEE Transactions on Nuclear Science, 51(5):2957–2969,
October 2004.

[4] I. Polian and J. P. Hayes. Selective hardening: Toward cost-effective error
tolerance. IEEE Design and Test of Computers, 28(3):54–62, May/June
2011.

[5] P. M. Kogge and H. S. Stone. A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE Transactions

on Computers, C-22(8):786–793, August 1973.
[6] C. S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on

Computers, EC-13:14–17, February 1964.

