A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies

Jongyeon Kim¹, An Chen², Behtash Behin-Aein², Saurabh Kumar³, Jian-Ping Wang¹, and Chris H. Kim¹

¹University of Minnesota, Minneapolis, MN 55455 USA
²GLOBALFOUNDRIES, Sunnyvale, CA 94085, USA

Abstract - The development of a scalable and user-friendly SPICE model is a key aspect of exploring the potential of spin-transfer torque MRAM (STT-MRAM). A self-contained magnetic tunnel junction (MTJ) model is proposed in this work which can reproduce realistic MTJ characteristics based on user-defined input parameters such as the free layer’s length, width, and thickness. Using the proposed model, scalability studies of both in-plane and perpendicular MTJs can be performed across different technology nodes with minimal effort, which differentiates this model from most previously reported models.

I. INTRODUCTION

With complementary metal–oxide–semiconductor (CMOS) reaching its fundamental limits, the integration of spintronics into conventional CMOS is thoroughly being investigated to provide low static power as well as new functionalities while preserving the benefits of CMOS [1]. Spintronics applications such as MRAM or non-volatile flip-flops utilize a device structure called magnetic tunnel junction (MTJ) whose resistance states can be changed by spin-transfer torque (STT) current and read by sensing the tunneling magnetoresistance (TMR) difference. A key aspect of evaluating STT-MRAM technology is the development of a scalable MTJ compact model which can be used to incorporate realistic variability effects across different technology nodes.

Several SPICE compatible MTJ models have been reported in the past [2-4] to fulfill this goal. In [2], MTJ behaviors were emulated with SPICE subcircuits (e.g. bistable circuit, curve fitting circuit) based on empirical input parameters such as thermal stability (ΔT), parallel and antiparallel resistance (RP, RAP), and the critical switching current (IC). In order to capture realistic spin dynamics, the models in [3, 4] implemented the Landau-Lifshitz-Gilbert (LLG) equation using built-in SPICE elements such as resistors, capacitors, and voltage/current-dependent voltage/current sources, considering physical parameters such as effective anisotropy field (Hk,eff), MTJ dimensions, and material parameters. However, these models lack the flexibility for studying the scalability of various STT-MRAM designs since they still relied on a pre-calculated Hk,eff value which is a function of the MTJ width, length, and thickness dimensions.

For a compact model to be useful in evaluating STT-MRAM circuits across different technologies, it has to be scalable for future nodes and at the same time be fully-compatible with SPICE. To satisfy these requirements, we propose a scalable physics-based SPICE MTJ model with user-defined dimensional and material parameters. The main improvements of this work compared to previous SPICE MTJ models are summarized as follows.

- We provide a self-contained MTJ model that comprehends anisotropy, STT switching, TMR, and temperature effect, which is reconfigurable using user-defined input parameters.
- Our model generates Hk,eff for all types of anisotropy sources such as shape, crystal, and interface, which makes it possible to simulate both in-plane and perpendicular MTJs in any given technology node.
- Spin dynamics computed by incorporating the dimension-dependent Hk,eff into the LLG equation, instantly reflects

II. MTJ PHYSICS TO BE MODELED

A. Magnetic Anisotropy

Several MTJ options exist depending on the physical origin of magnetic anisotropy (MA): namely, shape anisotropy-based in-plane MTJ (IMTJ), crystal anisotropy-based perpendicular MTJ (c-PMTJ), and interface anisotropy-based perpendicular MTJ (i-PMTJ).

For IMTJ, the origin of shape anisotropy is the demagnetizing field (Hd) which is stronger along the axis with a shorter dimension. As a result, the magnetization (M) has a tendency to align with the longest axis giving rise to shape-dependent magnetic anisotropy. The free layer of the IMTJ can be regarded as an elongated thin film with the shortest axis being in the z-direction. Here, M stays in the x-y plane as shown in Fig. 1 (a). The shape anisotropy field (Hk,shape) can be expressed as:

\[H_{k,\text{shape}} = 4\pi (N_M - N_d) M_z \]

(1)

where \(M_z \) is the saturation magnetization and \(N_d \) is the geometry-dependent demagnetizing factor. However, the IMTJ has to overcome a large \(H_{k,d} \) resulting in a large switching current.

PMTJ on the other hand can provide a lower switching current compared to IMTJ since \(H_{k,d} \) assists the magnetization switching by partially canceling out the perpendicular anisotropy field (\(H_{k,c} \)) as shown in Fig. 1(a). However, in order to maintain the proper orientation of the \(M, H_{k,c} \) must overpower \(H_{k,d} \). This can be achieved by using either a high crystal anisotropy \(H_k \) using L1_0-phase alloys (e.g. CoPt, FePd) or interface anisotropy \(K_{i} \) using a CoFeB layer thinner than its critical thickness \(t_c \). The effective perpendicular anisotropy field \(H_{k,i} \) is given by:

\[H_{k,i} \]
For c-PMTJ, \(K_s \) is equivalent to \(K_o \) of the specific material. For i-PMTJ, \(K_s \) is replaced with \(K_i/t_f \) (i.e., \(2\pi M_s^2 t_f/t_p \) where \(t_p \) is the free layer thickness.

B. STT Switching

Bi-directional spin-polarized electrons exert spin torque to the free layer and induce magnetization switching in the desired direction as shown in Fig. 1(b). If we treat the free layer as a single magnetic domain, the spin dynamics can be characterized with a time-varying unit magnetization vector given as \(\mathbf{M}(t)=\mathbf{M}_f(t), \mathbf{M}_i(t), \mathbf{M}_o(t) \). When a switching current density \(J \) is applied to the MTJ, the spin-polarized current exerts spin torque to flip \(\mathbf{M} \) against \(H_{K\text{eff}} \). Here, the spin direction of polarized current depends on the magnetization of the pinned layer \(\mathbf{M}_P \). Since \(H_{K\text{eff}} \) of an IMTJ is mainly governed by \(H_{K\text{eff}} \), its magnetization vector can be denoted as follows:

\[
\mathbf{M}(t) = 4\pi M_s [N_x \mathbf{M}_x(t), N_y \mathbf{M}_y(t), N_z \mathbf{M}_z(t)].
\]

\(\mathbf{H}_{K\text{eff}}(t) = -4\pi M_s [N_x \mathbf{M}_x(t), N_y \mathbf{M}_y(t), N_z \mathbf{M}_z(t)] \). (3)

On the other hand, \(H_{K\text{eff}} \) of a PMTJ is the combination of \(H_{K\text{eff}} \), and \(H_{J} \) so its vector notation is given by

\[
\mathbf{H}_{K\text{eff}}(t) = [0,0,4\pi M_s (N_x \mathbf{M}_x(t), N_y \mathbf{M}_y(t), N_z \mathbf{M}_z(t)].
\]

\(\mathbf{H}_{K\text{eff}} \) is determined by the MTJ, a charge current \((I_{\text{PJ}}) \), and \(t_f \) as well as the material related for c-PMTJ and \(\alpha \) dependent for i-PMTJ.

\[
\mathbf{M}(t) = 4\pi M_s [N_x \mathbf{M}_x(t), N_y \mathbf{M}_y(t), N_z \mathbf{M}_z(t)].
\]

\(\mathbf{H}_{K\text{eff}} \) is the combination of \(\mathbf{H}_{K\text{eff}} \) and \(H_{J} \) so its vector notation is given by

\[
\mathbf{H}_{K\text{eff}}(t) = [0,0,4\pi M_s (N_x \mathbf{M}_x(t), N_y \mathbf{M}_y(t), N_z \mathbf{M}_z(t)].
\]

C. Temperature Effect

The transient behavior of an MTJ is non-deterministic due to the random thermal field which causes the magnetization vector to deviate from the easy axis by an angle determined by the MTJ temperature. Moreover, at long current pulses (i.e., \(\gg 10 \text{ns} \)), an increase in internal temperature due to Joule heating excites the thermal field thereby reducing the switching current as shown in Fig. 1(c). For fast precessional switching, which is more relevant in today’s high speed STT-MRAM, the stochastic behavior can be captured using a switching probability \((P_{sw}) \) as a function of the critical initial angle \((\theta_c) \), which can be described as:

\[
P_{sw} = 1 - \int_0^\pi \sin \theta \exp(-\Delta \sin^2 \theta) d\theta, \Delta = \frac{E_{so}}{k_B T}.
\]

Where \(T \) is the temperature, \(E_{so} \) is the energy barrier, \(k_B \) is the Boltzmann constant.

Material parameters related to device performance also have a temperature dependency as follows:

\[
M_s(T) = M_{so}(1 - T/T_c)^{3/2}, \quad P(T) = P_0(1 - \alpha_{T} T^2)^{1/2},
\]

where \(M_{so} \) and \(P_0 \) are the saturation magnetization and the polarization factor at absolute zero temperature, \(T_c \) is the Curie temperature, \(\beta \) and \(\alpha_{sp} \) are the material-dependent constants.

D. TMR

An MTJ can be considered as a voltage-controlled variable resistance represented by the resistance-voltage (R-V) hysteresis curve shown in Fig. 1(d). The resistance ratio at a zero bias (TMRz) is defined as \(R_{AP}/R_{P} \). Since the TMR depends on temperature and bias voltage, TMR effect is a better measure to evaluate read/write performances. The voltage and temperature dependency of TMR can be captured using the temperature-dependent polarization equation:

\[
H_{K\text{eff}}(t) - H_{0} = 2K_s/M_s - 4\pi M_s \theta(t).
\]

For c-PMTJ, \(K_s \) is equivalent to \(K_o \) of the specific material. For i-PMTJ, \(K_s \) is replaced with \(K_i/t_f \) (i.e., \(2\pi M_s^2 t_f/t_p \) where \(t_p \) is the free layer thickness.

\[
\text{C. Temperature Effect}
\]

\[
\text{D. TMR}
\]

\[
\text{III. MODEL FRAMEWORK AND IMPLEMENTATION}
\]

The physical behaviors of a real MTJ were recreated using four dedicated SPICE subcircuits: namely, anisotropy, STT, TMR, and temperature subcircuits as shown in Fig. 2. Once the type of MTJ is selected, the anisotropy circuit generates \(H_{K\text{eff}} \) as described in (3) and (4) for the given MTJ dimensions and material parameters. Meanwhile, the temperature circuit estimates \(\theta_t \) at a given temperature as well as the switching probability given in (6), which sets the initial position of \(\mathbf{M} \). When a bias voltage \(V_{\text{MTJ}} \) is applied to the MTJ, a charge current \((I_{\text{MTJ}}) \) passes through the MTJ. The \(I_{\text{MTJ}} \) fed to the STT circuit generates a spin-polarized current and triggers dynamic spin motion returning x, y, and z coordinates of the time-
varying vector \(\vec{M} \). The Cartesian coordinates are converted to spherical coordinates by the TMR circuit generating a relative angle between the free and pinned layers to determine the MTJ resistance (\(R_{\text{MTJ}} \)). The \(I_{\text{MTJ}} \) is also an input to the temperature circuit to estimate the increase in internal temperature due to Joule heating. The updated temperature is fed back to the STT and TMR circuits modifying material parameters that have a temperature dependency as given in (7) and (8). Fig. 3 shows input knobs which provide sufficient flexibility to explore various aspects of MTJ switching behavior.

For full compatibility with SPICE, each subcircuit was implemented using basic circuit elements such as resistors, capacitors, and voltage-/current-dependent voltage/current sources. For example, the constants and variables included in the physical equations were defined using SPICE parameters (i.e., .PARAM command) and voltage-dependent voltage sources, respectively. Multiplication between a coefficient and a variable was implemented using a resistor (\(V=I\cdot R \)). In this way, all the internal values are represented using node voltages. The most critical part of the model implementation is the dynamic spin motion described by the LLG equation, which is presented in Fig. 4. Numerically, the LLG equation is a differential equation containing cross products of three dimensional vectors (i.e., \(\vec{M}, \vec{M}_0, \) and \(\vec{H}_{\text{eff}} \)). In terms of circuit implementation, the differential behavior of \(\vec{M} \) can be captured using a capacitor with voltage-dependent current sources connected in parallel, which emulates an incremental charge build-up over time in the capacitor: \(I=C\cdot \frac{dV}{dt} \).

Three current sources represent the precession, damping, and spin torque terms in the LLG equation, and their vector cross product can be rewritten into linear forms as described in the SPICE script. \(M_0 \) is the additional node to set the initial angle in case of consecutive switching. To solve a three-dimensional LLG equation, separate circuits for \(x, y, \) and \(z \) coordinates are implemented in the same way. The anisotropy and TMR circuits are simply implemented with SPICE parameters and voltage sources, while the temperature circuit uses a distributed RC line model which emulates the heat diffusion equation as suggested in [4].

IV. MODEL VERIFICATION

In order to verify the accuracy of the model, simulation results were compared with experimental data. In Fig. 5, the simulated dynamic spin motions of IMTJ and PMTJ are presented alongside the temperature dependency of several material parameters. The results show a clear contrast between the magnetization trajectories of IMTJ and PMTJ, which was not observed using the previous models [2–4]. In Fig. 6(a), simulation results show good agreement with the 50% switching probability contour where switching time was measured as a function of bias voltage [5]. The model can be extended to track a higher percentile contour such as 99.99%. In Fig. 6(b), the simulated R-V hysteresis curves reproduce the MTJ resistance and the critical switching voltage (\(V_c \)) at different temperatures [6]. The flexibility of our model makes it easy to incorporate additional MTJ characteristics. For instance, asymmetry in the I-V hysteresis curve shown in Fig. 7(a) can be included using a user-defined asymmetry factor. Fig. 7(b) shows the switching probability according to the critical initial angle, providing detailed info regarding the switching current requirement.

V. MODEL APPLICATION

A. Scalability Studies of In-Plane and Perpendicular MTJs

As mentioned earlier, \(H_{\text{eff}} \) in our model is calculated using the \(x, y, \) and \(z \) dimensions of an MTJ and therefore the model can be used for studying the detailed scaling behavior of different MTJs (i.e., IMTJ, c-PMTJ, and i-PMTJ). Fig. 8 shows an example of such a study for a 128 MB cache memory with a 10 year retention failure probability target of 0.01%. The thermal stability \(\Delta \) required for this target retention time can be met by adjusting the MTJ dimensions in different ways depending on the anisotropy source. For instance, a higher \(\Delta \) can be obtained for IMTJ by either increasing the aspect ratio (AR) or increasing \(t_F \) while ensuring single domain switching (e.g., AR<5). For c-PMTJ, \(K_u \) is increased to 2.0x10^5 J/m^3 (FePdX based free layer) while maintaining \(t_F \) of 0.45nm to induce high \(H_{Eg} \) for low \(L_c \). Below a 20nm MTJ width, it is necessary to increase the \(t_F \). For i-PMTJ, \(t_F \) must be reduced in order to increase \(K_u \) which in turn

![Fig. 5. MTJ switching dynamics verification. (a) Temperature dependency of material parameters during a switching event. (b) Dynamic spin motion for in-plane MTJ. (c) Dynamic spin motion for perpendicular MTJ.](image)

![Fig. 6. Simulation results compared to experimental data. (a) Switching time as a function of bias voltage across the MTJ. (b) Temperature-dependent R-V hysteresis curve.](image)

![Fig. 7. MTJ switching behavior characterization. (a) I-V hysteresis curve with asymmetric \(V_c \) for bi-directional switching. (b) Switching probability as a function of switching current using an initial angle dependency.](image)
increases the Δ. Below a 30nm MTJ width, a double interface i-PMTJ may have to be introduced to meet Δ. Thickness dependency of α in CoFeB is also considered for both MTJ and i-PMTJ. Based on this scenario, i-PMTJ shows the smallest Iw at a 20nm MTJ width as shown in Fig. 9(a). While i-PMTJ shows a rapid reduction in Iw with scaling, c-PMTJ shows a relatively constant Iw indicating its Iw scaling is more sensitive to material parameters rather than dimensional parameters as shown in Fig. 9(b).

B. Variability Studies of STT-MRAM Read and Write Delays

The proposed model was also used to study the statistical behavior of STT-MRAM read and write delays considering geometrical variation in both MTJ and CMOS. Fig. 10(a) shows the simplified read/write circuit schematic used for this experiment. MTJs were assumed to be connected in the reverse direction (i.e. so called top-pinned MTJ structure) to balance bi-directional switching. Bi-directional write current drivers and dual-voltage WL drivers are used to ensure sufficient write margin. Self-referencing MTJ cells and a mid-point reference circuit generating Iref=(Iw+Ip)/2 are incorporated for good readability. As shown in Fig. 10(b), the STT-MRAM critical path comprising of the MTJ and CMOS shows good read/write operations. Using this simulation setup, realistic variation is introduced to MTJ input parameters (i.e. W, L, tp, RA) as well as CMOS input parameters (i.e. transistor W, L, Vth, Ton). Fig. 10(c) shows write and sensing delay distributions with 6σ values denoted in the figure legends. The write delay is measured from WL activation to the time when the M flips whereas the sensing delay is measured from WL activation to the point when the bitline voltage difference reaches 25mV. As the write voltage increases, the switching delay distribution becomes narrower due to the faster precession at the higher bias voltage. For the sensing delay, the mismatch of read current paths between data and reference cells directly affects sensing voltages so a higher TMR is required for better read margin.

VI. CONCLUSION

In this work, we proposed a physics-based MTJ model with dimension-dependent Hk eff specifically designed for evaluating the scalability and variability of STT-MRAM circuits. The compact model was validated with measured data and has shown to successfully reproduce realistic MTJ characteristics in SPICE. Using the proposed model, we benchmarked the scalability of various MTJ technologies under iso-retention condition and simulated read and write delay variations. The proposed compact model will be useful for evaluating current and future STT-MRAM technology options, providing specific guidelines to the spintronics device and circuits community. The MTJ compact model along with documentation will shortly be available on a public download website.

ACKNOWLEDGMENT

This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

REFERENCES