SRAM Read Performance Degradation under Asymmetric NBTI and PBTI Stress: Characterization Vehicle and Statistical Aging

Xiaofei Wang^{1,2} Weichao Xu² and Chris H. Kim²

¹Intel Corporation, Hillsboro ²University of Minnesota, Twin Cities

xiaofei.wang@intel.com

Asymmetric BTI Aging Effects

- When input is static, PMOS and NMOS in a signal path are alternately stressed
- In active mode, the 1st edge propagates through unstressed devices while 2nd edge propagates through stressed devices only → Asymmetric BTI aging

SRAM Timing Path Aging

- Internal timing signal paths for SRAM operation are DC stressed when clock is gated off
- Affects the duty-cycle of critical signals such as WL, SAE, precharge, etc. → lower operating frequency

SRAM Read Frequency Odometer Structure

- One of the two identical 16kb SRAM arrays is stressed, the other one is kept fresh
- The dataout signal is looped back to generate selfoscillating signal

Loop Back Self-Oscillation Read Waveforms

Use Beat Frequency to Detect Aging (1/3)

- Phase comparator is used to generate the beat frequency
- At time zero the stressed ROSC is trimmed to be slightly slower than the reference ROSC

Use Beat Frequency to Detect Aging (2/3)

- Phase comparator output: f_{beat}=f_{ref}-f_{stress}
- Counter counters the number of reference cycle in one period of the beat signal

Use Beat Frequency to Detect Aging (3/3)

- 1% frequency difference before stress \rightarrow N=100
- 2% frequency difference after stress → N=50
- Δf or ΔT sensing resolution is 0.01%

32nm SRAM Test Chip and Features

Power Routing	Decap for VDD SRAM Ctrl Ctrl Ctrl	Str	Process	HKMG SOI CMOS
		SRAM	VDD / IO Supplies	0.9V / 1.8V
		Array	Each SRAM Array Size	128X128
		ol. Peri. Ref. SRAM Array	SRAM Cell Device Type	Floating-body device
	Decap for V _{Stress}		Peripheral Device Type	Body-contact device
			Area	500x455µm²
Bond	Power Routing		Meas. Δf Resolution	0.01%~0.1%
Pads -	PPPPPPPPP		Meas. Interrupt	~ 1µs

Degradation of f_{read} **with Stress Time**

- Mean value (μ) of f_{read} decreases with stress time while its standard deviation (σ) increases
- BTI induced σ is comparable to that of process variation induced σ for given stress condition

Distribution of f_{read} at Different Stress Voltage

 Mean value (μ) of f_{read} decreases with higher stress voltage while its standard deviation (σ) increases

Degradation of f_{read} with Stress Voltage

- σ of the SRAM read frequency degradation (Δf_{read}) follow power law dependence (tⁿ) as µ, due to discrete random charge fluctuation
- Larger degradation at higher stress voltages

Impact of Temperature on the Degradation of f_{read}

 The magnitudes of both μ and σ of Δfread at 135°C are more than twice of those at 25°C.

Slope distribution of f_{read} Aging

 The voltage and temperature have little impact on the BTI time slope distribution

Reduced SRAM Read Error Rate

 Bit failure rate is reduced after stress due to the relaxed WL pulse width

Summary

- Impact of asymmetric BTI aging on SRAM read speed studied for the first time
- An SRAM read speed odometer based on the beat-frequency detection concept was implemented in HKMG technology with ps resolution and µs measurement interruption
- SRAM read speed degrades due to the delayed SAE signal
- SRAM read failure rate decreases after stress due to the relaxed WL pulse width