SRAM Read Performance Degradation under Asymmetric NBTI and PBTI Stress: Characterization Vehicle and Statistical Aging

Xiaofei Wang1,2 Weichao Xu2 and Chris H. Kim2

1Intel Corporation, Hillsboro
2University of Minnesota, Twin Cities

xiaofei.wang@intel.com
Asymmetric BTI Aging Effects

- When input is static, PMOS and NMOS in a signal path are alternately stressed.
- In active mode, the 1^{st} edge propagates through unstressed devices while 2^{nd} edge propagates through stressed devices only → Asymmetric BTI aging.
SRAM Timing Path Aging

- Internal timing signal paths for SRAM operation are DC stressed when clock is gated off.
- Affects the duty-cycle of critical signals such as WL, SAE, precharge, etc. → lower operating frequency.
SRAM Read Frequency Odometer Structure

- One of the two identical 16kb SRAM arrays is stressed, the other one is kept fresh.
- The dataout signal is looped back to generate self-oscillating signal.
Loop Back Self-Oscillation Read Waveforms
Use Beat Frequency to Detect Aging (1/3)

- Phase comparator is used to generate the beat frequency.
- At time zero the stressed ROSC is trimmed to be slightly slower than the reference ROSC.
Use Beat Frequency to Detect Aging (2/3)

- Phase comparator output: \(f_{\text{beat}} = f_{\text{ref}} - f_{\text{stress}} \)
- Counter counts the number of reference cycle in one period of the beat signal
 \[
 N = \frac{f_{\text{str}} - f_{\text{ref}}}{f_{\text{ref}}}
 \]
Use Beat Frequency to Detect Aging (3/3)

- f_{stress} (GHz):
 - 0.99 \rightarrow N=100
 - 0.98 \rightarrow N=50

- f_{ref}: 1.00GHz
- $f_{\text{beat}} = f_{\text{ref}} - f_{\text{stress}}$

- 1% frequency difference before stress \rightarrow N=100
- 2% frequency difference after stress \rightarrow N=50
- Δf or ΔT sensing resolution is 0.01%
32nm SRAM Test Chip and Features

<table>
<thead>
<tr>
<th>Process</th>
<th>HKMG SOI CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD/IO Supplies</td>
<td>0.9V / 1.8V</td>
</tr>
<tr>
<td>Each SRAM Array Size</td>
<td>128X128</td>
</tr>
<tr>
<td>SRAM Cell Device Type</td>
<td>Floating-body device</td>
</tr>
<tr>
<td>Peripheral Device Type</td>
<td>Body-contact device</td>
</tr>
<tr>
<td>Area</td>
<td>500x455μm²</td>
</tr>
<tr>
<td>Meas. Δf Resolution</td>
<td>0.01%~0.1%</td>
</tr>
<tr>
<td>Meas. Interrupt</td>
<td>~ 1μs</td>
</tr>
</tbody>
</table>
Degradation of f_{read} with Stress Time

- Mean value (μ) of f_{read} decreases with stress time while its standard deviation (σ) increases
- BTI induced σ is comparable to that of process variation induced σ for given stress condition
Distribution of f_{read} at Different Stress Voltage

- Mean value (μ) of f_{read} decreases with higher stress voltage while its standard deviation (σ) increases.

Stressed @25°C for 1500s

- f_{read} (GHz): 1.25, 1.3, 1.35
- Occurrences (%):
 - 1.4V: $\mu=1.34$, $\sigma=0.0048$
 - 1.6V: $\mu=1.33$, $\sigma=0.0065$
 - 1.8V: $\mu=1.28$, $\sigma=0.01$

μ decreases; σ increases.
Degradation of f_{read} with Stress Voltage

- σ of the SRAM read frequency degradation (Δf_{read}) follow power law dependence (t^n) as μ, due to discrete random charge fluctuation
- Larger degradation at higher stress voltages
Impact of Temperature on the Degradation of f_{read}

- The magnitudes of both μ and σ of Δf_{read} at 135°C are more than twice of those at 25°C.
Slope distribution of f_{read} Aging

- The voltage and temperature have little impact on the BTI time slope distribution.
Reduced SRAM Read Error Rate

- Bit failure rate is reduced after stress due to the relaxed WL pulse width.
Summary

• Impact of asymmetric BTI aging on SRAM read speed studied for the first time
• An SRAM read speed odometer based on the beat-frequency detection concept was implemented in HKMG technology with ps resolution and μs measurement interruption
• SRAM read speed degrades due to the delayed SAE signal
• SRAM read failure rate decreases after stress due to the relaxed WL pulse width