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Purpose

 Design a dedicated on-chip array-based
circuit for efficiently characterizing latent

plasma-induced damage.

e Collect massive time-to-breakdown data
from devices with various antenna

topologies in a short test time.
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Plasma-Induced Damage (PID)

Plasma charge

Charge build up during back-end process

m: Long metal interconnect (Antenna)
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*—) Gate dielectric Junction & *
g L
Receiver Driver

Z.\Wang, et al., ICICDT 2005
« Plasma charge generated during the fabrication process

leads to damage in the gate dielectric manifesting as
latent BTl and TDDB reliability issues.

« The contiguous metal structure referred to as “antenna’
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Characterizing “Latent” PID:
BTlvs. TDDB

“Blas Temperature Instability”
“Time Dependent Dielectric Breakdown”

BTl Test TDDB Test
Impact of _
latent PID Increased AVth Shorter time-to-breakdown
Pros Higher sensitivity Suitable for array based
Short test time test structures

Difficult to collect high
Cons quality data (fast BTI,
unwanted recovery)

Lower sensitivity
Longer test time

« BTl & TDDB methods have to be considered together in
order to fully understand the impact of latent PID on
device and circuit reliability
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Gate dielectric

TDDB Aggravated by PID
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(a) TDDB mechanism

More traps are generated

VDD during plasma process
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(b) TDDB in the presence of PID
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Circuit Impact and Mitigation Techniques

(a) PID in Inverter Chain

b) PID Solution:
Jumper Insertion

c) PID Solution:

Protection Diode

M4
M3
M2
M1

Long metal wire
PID
1|4 Ty
=t
ol o= = Ly
Driver Receiver

Jumper

Long
metal wire

e O

Receiver

Long

metal wire
Reverse
biased
; P-diode
Reverse
biased 2% 4 T 1T 1

N-diode & .
: Receiver

(1) Increased Vth shift
>> Delay1

(2) Aggravated TDDB
>> Lifetime|

Inserting vias
>> R1, Delay?
>> EDA tool support
>> Time to market 1

Inserting diodes
>> C1, Delay?
>> [ eakage current|
>> EDA tool support

>> Tirnman fA mavirnt
TIIHNIC WV 11IdiInci

P. H. Chen, IEEE Circuits & Devices Magazine 2004
e Mitigation techniques incur speed, power, cost, and

time-to-market overhead
 PID impact on circuits need to be accurately assessed
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PID Characterization Method
Device Probing vs. Array-Based System

Device probing

2|

Wafer probe system

Array-Based system

Meas. | Wafer .
time | area Measurement Scalability
Device Probing 1 1 Off-chip tester No
Array-based *1/n? | *1/n® | On-chip current to digital Yes

*nxn array, parallel stress

P. Jain, et al., ESSDERC 2012
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Proposed PID Characterization Array

)l Column periph.
;|; 24
g %, o o
S o [
o 112
;’ - Q@ O®® | One set of || One set of
n? Stress Cells|| Stress Cells
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T @9‘?‘ l BL
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FSM —1 Current-to-digital converter %REXT
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Logic Analyzer, Labview® interface

12x24 stress cells array allows parallel stress/serial
measurement capability
Three types of antenna implemented: plate-type

antenna, fork-type antenna, no antenna
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Unit Stress Cell with Antenna Structure

x4 VSTRESS (2~3 times nominal supply)
DUT Antenna structure
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P. Jain, et al., ESSDERC 2012

« A NMOS with 5.0nm tox (2.5V) is used as a DUT
 Pre-breakdown: Full VSTRESS appears across DUT
* Post-breakdown: 2V;s+2V, drop blocks VSTRESS
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On-Chip Current-to-Digital Converter

VCO CLK
RST 16b Counter

16i
16 b parallel/seriallCount
shift register

ADR_CLK

] 2
i DISCHARGE |
[ ]

VDDL domain

 Fast evaluation of progressive TDDB behavior in the
DUT cell

* |5 of each DUT measured sequentially and converted to
a digital count and read off-chip
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PID during Plasma Etching / Ashing

lon Plasma Charge O, Plasma Charge
o| o ®l o
o l o |® o
°l o ° o ol %o
J d {Xﬁ‘ ®
Metal J:<® ;<] Metal | [ Metal | ¥ ¥ [Metal |
Dielectric Dielectric
Plasma Etching Plasma Ashing

H. Shin, et al., IRPS 1992
 Etching: plasma charging current is proportional to
metal perimeter area

« Ashing : plasma charging current is proportional to
metal top surface area
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Plate and Fork Type Antenna

AR=10k

AR=20k

DUT with plate type
antenna

64ea

32ea

DUT with fork type
antenna

64ea

32ea

Reference DUT without antenna : 96ea

 Fork type antenna consists of numerous metal fingers
and hence occupies a larger silicon area than the plate

type antenna for the same antenna ratio (AR)
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Metal layer | Signal routing | Antenna | Jumper
M7 o]
M5 ~ M6
M2 ~ M4 o]
M1 o]
AR=10k AR=20k
M5, M6 316.72pm? 607.76pm?>
M2, M3, M4 171.2um?> 462.24um’>
fotalantenna areal 1147.04um* |  2602.24um’
AR (Antenna Ratio)| 10241 23234

total surface area of antenna structure

AR =

gate area

Metal Layer Usage and Antenna Ratio

« Each antenna consists of 5 metal layers (M2-M6)

« AR values of 10k and 20k were implemented
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Layout View of Three Stress Cells
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Cross-sectional View of Antenna Structure

A small M7 jumper line connects VSTRESS
o the antenna nodes for VSTRESS
., e . mm L Leedea
Pl = — ;>
S me e |
c< M4
2
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<

0 | wr |
| M2
M1
i N B

(1) DUT with plate antenna (2) DUT with fork antenna (3) DUT w/o antenna

iy

Area(M2-M6
AR(Plate, Fork) = Z ( ) + Area(M7)
Area(Gate) Area(Gate) x (12x 24)
AR(No antenna) = Area(M7)
Area(Gate) x (12x 24)

« A small M7 jumper line was used to maximize the PID
damage occurring while forming layers M2-M6
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Measured Breakdown Data @ 6.5V
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The cumulative time-to-breakdown curve shifts to the
left for DUT array with larger antennas

« DUT array with plate antenna shows a consistently

7.7% (or 10.2%) for a 6.5V stress voltage

shorter lifetime compared to its fork type counterpart
— Lifetime degradation of the fork (or plate) antenna with 10k AR:
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Measured Breakdown Data @ 6.7V
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« Similar trends for a higher stress voltage of 6.7V
 Larger antenna shows worse PID
 Plate type antenna has worse PID than fork type
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Chip-to-Chip Variation

105
)
_&: 100
£ 95
o
S 90
2
g 85
= 80
5

75

¢ ¢ r—

—

/x\x

I I I

#2 #3 #4
Chip #

#1

6.5V,26°C

== No antenna

=& Fork (10k AR)
Plate (10k AR)

== Fork (20k AR)
Plate (20k AR)

MTTF (63%, normalized)

- =
N N 00 0 ©O O O o
o O O O O 01 © O

#5

#6  #7
Chip #

#8

6.7V, 26°C
& & o >——
T #" =+ No antenna
\ =#- Fork (10k AR)
*/(\X Plate (10k AR)
=& Fork (20k AR)
Plate (20k AR)

e Time-to-breakdown trend consistent across different
chips

« Measured data suggests that PID during the etching is
relatively small compared to that during the ashing
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65nm Die Photo and Chip Features
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Process 65nm LP CMOS
VDD (core/lO) 1.2V /| 2.5V

Stress Condition 6.5V, 6.7V @ 26°C
Circuit Area 0.65x0.36mm?’
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Conclusions

 Array-based PID characterization circuit with various
antenna structures fabricated in a 65nm process

— Reduces the stress time and silicon area by a factor
proportional to the number of DUTs to be tested

— An effective research tool for understanding PID effects

e Time-to-breakdown curve shifts to the left for DUT
array with larger antennas

« DUT with plate antenna has a consistently shorter
lifetime compared to its fork type counterpart

— Suggests that PID during the etching step is relatively small
compared to that during the ashing step
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