

An Array-Based Circuit for Characterizing Latent Plasma-Induced Damage

Won Ho Choi, Pulkit Jain and Chris H. Kim

University of Minnesota, Minneapolis, MN

choi0444@umn.edu www.umn.edu/~chriskim/

Purpose

 Design a dedicated on-chip array-based circuit for efficiently characterizing latent plasma-induced damage.

 Collect massive time-to-breakdown data from devices with various antenna topologies in a short test time.

Outline

- Plasma-Induced Damage (PID)
- Array-Based PID Characterization Circuit
- Antenna Design
- Stress Experiment Results
- Conclusions

Z. Wang, et al., ICICDT 2005

- Plasma charge generated during the fabrication process leads to damage in the gate dielectric manifesting as latent BTI and TDDB reliability issues.
- The contiguous metal structure referred to as "antenna"

Characterizing "Latent" PID: BTI vs. TDDB

"<u>Bias Temperature Instability</u>" "<u>Time Dependent Dielectric Breakdown</u>"

	BTI Test	TDDB Test	
Impact of latent PID	Increased ∆Vth	Shorter time-to-breakdown	
Pros	Higher sensitivity Short test time	Suitable for array based test structures	
Cons	Difficult to collect high quality data (fast BTI, unwanted recovery)	Lower sensitivity Longer test time	

 BTI & TDDB methods have to be considered together in order to fully understand the impact of latent PID on device and circuit reliability

TDDB Aggravated by PID

(b) TDDB in the presence of PID

Circuit Impact and Mitigation Techniques

P. H. Chen, IEEE Circuits & Devices Magazine 2004

- Mitigation techniques incur speed, power, cost, and time-to-market overhead
- PID impact on circuits need to be accurately assessed

PID Characterization Method Device Probing vs. Array-Based System

	Meas. time	Wafer area	Measurement	Scalability
Device Probing	1	1	Off-chip tester	No
Array-based	*1/n ²	*1/n ²	On-chip current to digital	Yes

*nxn array, parallel stress

P. Jain, et al., ESSDERC 2012

Proposed PID Characterization Array

- 12x24 stress cells array allows parallel stress/serial measurement capability
- Three types of antenna implemented: plate-type antenna, fork-type antenna, no antenna

Unit Stress Cell with Antenna Structure

- A NMOS with 5.0nm tox (2.5V) is used as a DUT
- Pre-breakdown: Full VSTRESS appears across DUT
- Post-breakdown: 2V_{GS}+2V_T drop blocks VSTRESS

On-Chip Current-to-Digital Converter

- Fast evaluation of progressive TDDB behavior in the DUT cell
- I_G of each DUT measured sequentially and converted to a digital count and read off-chip

PID during Plasma Etching / Ashing

Plasma Etching

<u>Plasma Ashing</u>

H. Shin, et al., IRPS 1992

- <u>Etching</u>: plasma charging current is proportional to <u>metal perimeter area</u>
- <u>Ashing</u>: plasma charging current is proportional to metal top surface area

Plate and Fork Type Antenna

antenna	64ea	32ea
DUT with fork type antenna	64ea	32ea

Reference DUT without antenna : 96ea

 Fork type antenna consists of numerous metal fingers and hence occupies a larger silicon area than the plate type antenna for the same antenna ratio (AR)

Metal Layer Usage and Antenna Ratio

Metal layer	Signal routing	Antenna	Jumper
M7			0
M5 ~ M6		0	
M2 ~ M4	0	0	
M1	0		

	AR=10k	AR=20k	
M5, M6	316.72µm ²	607.76µm²	
M2, M3, M4	171.2µm²	462.24µm ²	
Total antenna area of each DUT	1147.04µm²	2602.24µm²	
AR (Antenna Ratio)	10241	23234	
AR = total surface area of antenna structure			

- Each antenna consists of 5 metal layers (M2-M6)
- AR values of 10k and 20k were implemented

Layout View of Three Stress Cells

Cross-sectional View of Antenna Structure

• A small M7 jumper line was used to maximize the PID damage occurring while forming layers M2-M6

Measured Breakdown Data @ 6.5V

- The cumulative time-to-breakdown curve shifts to the left for DUT array with larger antennas
- DUT array with plate antenna shows a consistently shorter lifetime compared to its fork type counterpart
 - Lifetime degradation of the fork (or plate) antenna with 10k AR:
 7.7% (or 10.2%) for a 6.5V stress voltage

Measured Breakdown Data @ 6.7V

- Similar trends for a higher stress voltage of 6.7V
 - Larger antenna shows worse PID
 - Plate type antenna has worse PID than fork type

Chip-to-Chip Variation

- Time-to-breakdown trend consistent across different chips
- Measured data suggests that PID during the etching is relatively small compared to that during the ashing

65nm Die Photo and Chip Features

Process	65nm LP CMOS
VDD (core/IO)	1.2V / 2.5V
Stress Condition	6.5V, 6.7V @ 26°C
Circuit Area	0.65x0.36mm ²

Conclusions

- Array-based PID characterization circuit with various antenna structures fabricated in a 65nm process
 - Reduces the stress time and silicon area by a factor proportional to the number of DUTs to be tested
 - An effective research tool for understanding PID effects
- Time-to-breakdown curve shifts to the left for DUT array with larger antennas
- DUT with plate antenna has a consistently shorter lifetime compared to its fork type counterpart
 - Suggests that PID during the etching step is relatively small compared to that during the ashing step