

### Impact of Interconnect Length on BTI and HCI Induced Frequency Degradation

#### Xiaofei Wang, Pulkit Jain, Dong Jiao and Chris H. Kim

University of Minnesota, Minneapolis, MN

xfwang@umn.edu www.umn.edu/~chriskim/

## Purpose

- Explore the dependence of BTI and HCI induced aging on interconnect length
- Design a dedicated on-chip aging monitor for interconnect paths
- Develop BTI and HCI aging models applicable to interconnects

## Outline

- Interconnect Driver Aging
- All-in-one Silicon Odometer
- Test Chip Design and Results
- Aging Models for Interconnect Drivers
- Summary

### **Interconnect Driver Aging**

- Global interconnects
  - Clock networks
  - Memory wordlines and bitlines
  - Signal buses, etc
- Aging mechanisms
  - Front-end: BTI, HCI, TDDB
  - Back-end: EM, ILD breakdown
- Aging impact on interconnect fabrics
  - Clock skew worsens
  - Slew rate degrades
  - f<sub>max</sub> degrades
  - Duty cycle modified





S .Tam, et al., JSSC 2004



L. Chang, et al., VLSI Sym. 2007

### **BTI and HCI Mechanisms**



- <u>NBTI</u>: Holes in the channel facilitate the breaking of Si-H bonds, traps generated at the oxide interface
  - Occurs when the channel is in strong inversion mode
  - Fast recovery (<10µs) when the device is turned off</li>
- <u>HCI:</u> Energetic carriers causes dielectric degradation – Occurs when current is passing through the channel

#### **Motivation for Studying Interconnect Aging**



- Interconnect affects the voltage and current shapes
  - Increased transition time (decreased slew rate)
  - Increased current pulse; decreased current peak value
- BTI and HCI have different sensitivities to bias conditions

#### Silicon Odometer Beat Frequency Scheme



T. Kim, et al., JSSC, 2008

- Beat frequency of two free running ROSCs measured by DFF and edge detector
- Benefits of beat frequency detection system
  - Achieve ps resolution with µs measurement interrupt
  - Insensitive to common mode noise such as temperature drifts
  - Fully digital, scan based interface, easy to implement

#### **Beat Frequency Detection Concept**



- Sample stressed ROSC output with reference ROSC
  - 1% delay different before stress  $\rightarrow$  N=100
  - 1.01% delay different after stress  $\rightarrow$  N=99
  - Minimum  $\Delta f$  sensing resolution is 0.01%

### **All-In-One Silicon Odometer**



J. Keane, et al., VLSI Symp. 2009, JSSC 2010

- 2 pairs of ROSCs: stressed pair and unstressed pair
- For the stressed pair, one ROSC suffers from BTI only; the other undergoes both BTI & HCI
- Two beat frequency detection systems

### **Separating BTI and HCI**



- Stress mode: ROSC loops open
  - Top ROSC gated off from supply, no HCI stress
  - Bottom ROSC drives transitions
- Measurement mode: ROSC loops close
  - Both ROSCs are free running
  - Switches between them are open

#### **65nm Test Chip Die Photo and Features**

| 44 |
|----|
| CÚ |
|    |
|    |
|    |

| Process             | 65nm LP CMOS              |
|---------------------|---------------------------|
| Core / IO Supplies  | 1.2V / 2.5V               |
| Interconnect Length | 0µm, 250µm, 500µm, 1000µm |
| Interconnect Layer  | M2, W=100nm               |
| Interconnect RC     | R=1.4Ω/μm, C=0.09fF/μm    |
| Active Area         | 0.182mm <sup>2</sup>      |
| Δf Resolution       | 0.016%                    |
| Meas. Interrupt     | 3µs                       |

#### **BTI and HCI Aging: Without Interconnect**



- BTI is positively correlated with temperature; HCI is negatively correlated
- BTI is at best weakly dependent on frequency; HCI degrades with increased frequency
- BTI is less sensitive to stress voltage than HCI

#### **BTI and HCI Aging: With Interconnect**

![](_page_12_Figure_1.jpeg)

- BTI aging decreases with interconnect length
- HCI degradation peaks at L=500µm

### **BTI Aging vs. Interconnect Length**

![](_page_13_Figure_1.jpeg)

- BTI induced frequency degradation decreases with longer interconnect
- Longer transition time → shorter PMOS stress duration → Less BTI aging

## HCI Aging vs. Interconnect Length

![](_page_14_Figure_1.jpeg)

- HCI aging exhibits a non-monotonic behavior with respect to interconnect length
  - Current pulse width increases
  - Current peak decreases

### **Simulation Results**

![](_page_15_Figure_1.jpeg)

- Left: Reduced BTI stress duty cycle
- Right: Lower I<sub>peak</sub> → decreased HCI stress voltage
- Right: Increased current pulse width → increased HCI stress time

![](_page_16_Figure_0.jpeg)

#### **Aging Models for Interconnect Drivers**

#### **Interconnect Width and Length Dependency**

BTI

HCI

![](_page_17_Figure_3.jpeg)

- BTI reduced for larger interconnect L and W
- HCI generally worse for larger L and W
- Non-monotonic HCI dependence on L for small W

# Summary

- An odometer circuit designed to separately monitor BTI and HCI in long interconnects
  - 0.016% resolution with µs order measurement time
  - Insensitive to voltage and temperature drifts
- The dependence of BTI and HCI degradation on interconnect length explored for the first time
  - BTI decreases with longer interconnect
  - HCI shows non-monotonic dependence on interconnect length
- Proposed BTI and HCI models for interconnect drivers agree well with silicon data