An Array-Based Chip Lifetime Predictor Macro for Gate Dielectric Failures in Core and IO FETs

Pulkit Jain, *John Keane and Chris H. Kim

University of Minnesota *Intel Corporation

pulkit.jain25@gmail.com

Presentation Agenda

- Introduction to TDDB Lifetime Prediction
- Proposed TDDB Test Macro Description
 - -Flexible Stress Cell Design
 - -IO Stress Cell Design
- TDDB Measurement Results
- Conclusion

- Traps: Defects in dielectric, increase under electric field
- Traps overlap forming conductive path
- Gate dielectric no longer a reliable insulator

Parametric or functional failures

Different TDDB Manifestation

- Different modes of TDDB: on-state, off-state (HDHS, HD)
- Other modes important for structures like SRAM cells and IO inverters especially during burn-in/RF applications

Chip Lifetime Prediction Methodology

- Extrapolate stress results with respect to:
 - <u>Op. conditions</u> based on acceleration models
 - <u>Larger chip areas</u> (e.g., Poisson scaling for TDDB)
 - Lower percentiles based on chosen distribution

TDDB Characterization Methods Device Probing vs. Array Based Circuits

- Device probing: simplicity and legacy
- Advantages of an array based circuit approach
 - Parallel stress, short test time, small test area, high resolution, representativeness and accuracy

Proposed TDDB Test Macro

- Two new stress cells: flexible stress cell, IO stress cell
- Current to binary converter for fast evaluation
- Embedded calibration cells

Stress Cell Abstractions

Proposed stress cells

On-state, Core FET

J. Keane, CICC08

- Prior art only tackled <u>core</u> device on-state TDDB statistics
- Challenge for IO cell: How to provide high V_{STRESS} (~9V) to the DUT in isolation when we are employing thickest available t_{ox}

Flexible Stress Cell Design

IO Stress Cell Design

- Pre-breakdown: Full V_{STRESS} appears across DUT
- Post-breakdown: 2V_{GS}+2V_T drop blocks V_{STRESS}

Measured Data: On-state, Core FET

- Compared to previous on-state characterization in the same process (J. Keane, CICC'08)
 - Similar β value (=1.44)
 - Almost same [V] (=49.75) close to prev. work (=51.0)

Measured Data: Off-state, Core FET

- Compared to core on-state, off-state yields
 - Smaller spread or relatively large β (=1.56)
 - Smaller [V] (=43.5) compared to core case

- Compared to core devices, IO devices have:
 - Smaller spread or large β (=2.71)

- Smaller [V] (=44.5) compared to core case

Putting It All Together

 Proposed macro can <u>efficiently</u> collect large fail statistics under various stress modes

Test Chip Micro-photographs

Column periphs.	8x16 e DUTs	pe Decap	Row Col riphs. as. k 32 IO C	umn periphs.
		Core FET	IO FET	
Row	Lmin	130nm	250nm	
periphs.	Nominal VDD	1.2V	2.5V	
	Array dim.	1.33x0.9mm ²	0.34x0.24mm ²	
	DUT dim.	2µm x 2µm	2µm x 2µm	

 Two arrays for core and IO DUTs separately implemented

Conclusion

- Proposed TDDB macro reduces stress time and silicon area in proportion to number of DUTs
- Two stress cells were proposed:
 - A flexible DUT for both off and on-state stress
 - IO DUT for stressing up to $4xV_{DD}$ without thicker t_{ox} devices
- Two stress arrays were fabricated
 - L_{MIN} of 130nm for core devices and 250nm for IO devices
 - In tandem lifetime projections were made for comprehensive TDDB evaluation

Conclusion

- Proposed TDDB macro reduces stress time and silicon area in proportion to number of DUTs
- Two stress cells were proposed:
 - A flexible DUT for both off and on-state stress
 - -IO DUT for stressing up to $4xV_{DD}$ without thicker t_{ox} devices
- Two stress arrays were fabricated
 - L_{MIN} of 130nm for core devices and 250nm for IO devices
 - In tandem lifetime projections were made for comprehensive TDDB evaluation