An *All-In-One* Silicon Odometer
for Separately Monitoring
HCl, BTI, and TDDB

John Keane, Devin Persaud, and Chris H. Kim

University of Minnesota, Minneapolis
Outline of Presentation

• Introduction to Aging Mechanisms
• Proposed *All-In-One* Silicon Odometer Overview
• Improved Beat Frequency Detection System
• 65nm Test Chip Measurement Results
• Conclusions
Aging in CMOS Transistors

- **Bias**
- **Temperature**
- **Instability**

- **Hot carrier injection**
- **Time dependent dielectric breakdown**

- Reports show ~10% circuit speed degradation after 10 years under normal usage
- Must account for 3 major aging mechanisms during process characterization

J. Keane, et al., Trans. on VLSI 2009
M. Fakhruddin, et al., RFICS 2007
J. Keane, et al., CICC 2008
Combined Stress in Digital Circuits

NMOS

\[I_D \]

Inverted Channel

HCl

PBTI

PMOS

\[I_D \]

Inverted Channel

HCl

NBTI

NOTE: Voltage applied across dielectric → TDDB

Inverter

\[V_{in} \]

\[I_{Dn} \]

\[I_{Dp} \]

Vin

\[I_{Dn} \]

\[I_{Dp} \]

V_{in} and

NMOS

HCl

PBTI

PMOS

HCl

NBTI

[Graph showing current levels for NMOS and PMOS with HCl, PBTI, and NBTI conditions]
Introduction to NBTI

Stress Conditions

- Channel holes interact with Si-H bonds at interface to create traps
- Increase in \(|V_{th}|\)
 - \(~20\text{-}30\%\) increase in 10 years
- Partial recovery occurs when PMOS is turned off

Recovery

T. Kim, et al., VLSI Symp. 2007
Introduction to HCl

HCl in NMOS

- Energetic carriers ($V_{DS} \neq 0V$) overcome Si-SiO$_2$ potential barrier
- Causes degradation of gate dielectric
 - Interfacial and oxide traps
 - Negatively trapped charges create potential hump
- Degradation not reversible
Introduction to TDDB

• Traps generated under influence of electric field
• Traps overlap
 – Conductive path between gate and substrate
• Gate dielectric no longer a reliable insulator
 – Parametric or functional failure
Aging Impacts on Circuits

- **BTI**
 - SRAM SNM degrades; write stability improves (when NBTI is dominant)

- **HCI/BTI**
 - F_{MAX} degrades
 - Critical path changes due to asymmetric stress conditions
 - Subthreshold leakage decreases

- **TDDB**
 - Increased I_{GATE} leads to reduced o/p swing, **SNM degradation**, etc...
 - Device failure

R. Rodriguez, et al., IEDL, 2002

Breakdowns in different locations in SRAM cell
Prior Aging Measurement Methods

• Device probing with expensive wafer probes

• Karl proposed compact on-chip sensors for NBTI and TDDB (ISSCC 2008)

• Kim introduced the Silicon Odometer beat frequency detection concept (VLSI Symp. 2007; 2008 DAC/ISSCC Student Design Award)

• We implemented a test array for efficient statistical characterization of TDDB (CICC 2008; 2009 DAC/ISSCC Student Design Award)

• All-In-One Odometer presented here measures all three mechanisms with one test circuit
• 4 ROSCs: 2 stressed, and 2 unstressed
• One stressed suffers due to BTI only; the other "DRIVE" ROSC ages due to BTI & HCI
• Frequency degradation monitored with 2 Silicon Odometer beat frequency detection circuits
Backdrive Configuration

- **Stress Mode** (ROSC loops opened)
 - BTI_ROSC gated off from supply
 - DRIVE_ROSC drives transitions; I/P driven by VCO

- **Measurement Mode** (ROSC loops closed)
 - Both ROSCs connected to the power supply @ VCC
 - Switches between them are opened
BTI_ROSC in Stress Mode

Negligible HCI in BTI_ROSC

0V -- VSTRESS -- 0V

NBTI Stress PBTI Stress

- BTI_ROSC gated off from supply in stress mode; node transitions driven by DRIVE_ROSC
- Peak I_D though “on” devices in the former is only 3-5% of that in the latter
- The BTI_ROSC ages due only to BTI, while the DRIVE_ROSC suffers both BTI and HCI
• **MEASURESTRESS (M/S)**
 - High during measurements; Low during stress
• 3 levels of adjustable fanout
• I/O transistors experience negligible aging compared to logic devices under same stress
Silicon Odometer Beat Frequency Detection

- Two free running ROSCs for beat frequency detection
- Sample stressed ROSC output using reference ROSC output
- Count PC_OUT to determine freq. degradation
- Insensitive to environmental variation

T. Kim, et al., VLSI Symp. 2007
Beat Frequency Detection Circuit

- Second implementation of the “odometer”
- Added 2b counter to automatically kick the circuit back into stress after 3 measurements are recorded
- With ROSC period of 3ns, and maximum count of ~100, sub-900ns measurement interruptions (3ns x 3 x 100)
All-In-One Odometer 65nm Test Chip

- **Technology**: 65nm, 7M
- **Logic/IO Supplies**: 1.2V / 2.5V
- **Active Area**: 38,040μm²
- **Total Area**: (214.22X551.43) μm²
- **ΔT Resolution**: < 1ps
- **Measure Interrupt**: < 1μs
Measured Aging Results

- No frequency shift is observed for 0V “stress”
 - Stress results are not the product of unforeseen circuit effects
- Under regular stress both BTI and HCI degradation follow a power law behavior
• BTI is at most weakly dependent on frequency; HCI degrades with increased switching
• Increased load cap \rightarrow longer transition times,
 – Accelerated HCI
 – Little impact on BTI
Temperature and Voltage

- HCl slightly reduced with temperature
 - Reduced drain current
- Both mechanisms degrade with stress voltage
 - Point when HCl begins to dominate pushed out in time by >1 order of magnitude at 1.8V vs. 2.4V
Stress/Recovery and TDDB

- Common NBTI recovery; HCl\textsubscript{DEG} component did not improve when stress was removed
- Sudden drops in freq. interpreted as breakdowns
Conclusions

• Implemented single circuit to track BTI, HCl, and TDDB
 – Sub-µs measurement for minimal BTI recovery
 – Sub-ps frequency measurement resolution achieved with Silicon Odometer; measured frequency shifts down to ≤ 0.01%
• “Backdrive” used to isolate BTI-induced aging
• Test chip measurements presented with 1.8V – 3.9V stress, temperatures of 27°C & 120°C, and fanout increased by 3 inverter input caps
• Design can be used for cost and time efficient process characterization