Enhancing *Beneficial Jitter* Using Phase-Shifted Clock Distribution

Dong Jiao, Jie Gu, Pulkit Jain, and Chris H. Kim

University of Minnesota Department of Electrical and Computer Engineering

> jainx104@umn.edu www.umn.edu/~chriskim/

Presentation Agenda

- Resonant Noise and Timing
- Overview of *Beneficial Jitter* Effect
- Timing Models and 65nm Simulations
- Phase-Shifted Clock Distribution
- Conclusions

Power Supply Noise

IR and Ldi/dt noise:

Typically around 10~15% nominal V_{dd}

- Lower V_{dd} , larger I_{Vdd} , higher f_{clk} : Worsening supply noise with scaling
- Problems due to supply noise: Timing, noise margin, reliability, *etc*

Resonant Supply Noise

- Typical resonant frequency is 50-300MHz
- Excited by processor loop
 operation or current spike
- Large magnitude and long duration affects the whole chip

Passive Resonance Suppression

Increase on-chip decap

G. Ji, et al., T. Adv. Packaging, 2005

- Q factor signifies impedance peak
- Penalty for bringing down *Q* factor:
 - ↑*R*: Extra *IR* drop and power
 - $-\uparrow$ **C**: Area and leakage overhead
- Can resonant noise be utilized to improve circuit timing?

Presentation Agenda

- Resonant Noise and Timing
- Overview of Beneficial Jitter Effect
- Timing Models and 65nm Simulations
- Phase-Shifted Clock Distribution
- Conclusions

Timing Slack in Datapath

 Timing margin between clock period and datapath delay

Positive slack means correct operation

Beneficial Jitter Effect: Natural Timing Compensation Between Clock and Data

- Traditional analysis considers datapath delay only
- In reality, both datapath delay and clock period varies with supply noise

Beneficial Jitter Effect Simulation

- Inherent timing compensation between clock and data
- 25ps (or 5% T_{clk}) slack improvement when considering beneficial jitter effect

Factors Affecting Beneficial Jitter Effect

- θ_{res} : Supply noise phase at clock launch
- t_{cp} or $1/f_{cp}$: Clock path delay
- S_{clk}, S_{data}: Delay sensitivity to supply
 - Change in speed with respect to supply variation
 - E.g. If 10% Vdd change causes 15% speed change, s is 1.5
- f_{res} : Resonant frequency

Impact of Clock Path Delay

- Optimal clock path delay exists
 - Small f_{cp} : Approaches clean clock case
 - Large f_{cp} : Average supply voltages seen by clock edges closer
- Up to 58ps (11.6% T_{clk}) slack improvement with proper f_{cp}

Impact of Delay Sensitivity

- Typical clock path delay sensitivity is around 0.6 due to interconnect RC delay
- Much larger (or much smaller) sensitivity worsens timing slack

Impact of Resonant Frequency

- Beneficial jitter effect prominent in typical resonant frequency range
- Up to 87ps (11.6% T_{c/k}) slack improvement

Presentation Agenda

- Resonant Noise and Timing
- Overview of Beneficial Jitter Effect
- Timing Models and 65nm Simulations
- Phase-Shifted Clock Distribution
- Conclusions

Beneficial Jitter Effect Modeling

 D_0, t_e : Nominal/actual delay Y_0 : Nominal distance A_0, a : DC/AC supply voltage S, s: Delay sensitivity

[WRM06] K. L. Wong, et al., JSSC 2006

- Adopted methodology from [WRM06]
- Propagating signal represented as traveling wave with speed ∝ supply voltage
- Propagation delay equivalent to traveling distance

Beneficial Jitter Effect Modeling

Mathematical derivations:

$$Y_{0} = \int_{0}^{t_{0}} SA_{0}dt = SA_{0}t_{0}$$
$$Y_{0} = \int_{0}^{t_{e}} [SA_{0} + sa\cos(\omega_{m}t - \theta)]dt \quad (i)$$

Previous model [WRM06]

$$slack(\theta) = \frac{s_{clk}}{S_{clk}} \frac{2a}{A_0} \frac{f_{clk}}{\pi f_m} \sin(\frac{\pi f_m}{f_{clk}}) \sin(\frac{\pi f_m}{f_0}) \times \sin(\theta - \frac{\pi f_m}{f_0} - \frac{\pi f_m}{f_{clk}}) + \frac{s_{data}}{S_{data}} \frac{a}{A_0} \cos\theta$$

Revised simple model

$$\operatorname{slack}\left(\theta\right) = \frac{s_{clk}}{S_{clk}} \frac{2a}{A_0} \frac{f_{clk}}{\pi f_m} \sin\left(\frac{\pi f_m}{f_{clk}}\right) \sin\left(\frac{\pi f_m}{f_0}\right) \times \sin\left(\theta - \frac{\pi f_m}{f_0} - \frac{\pi f_m}{f_{clk}}\right) + \frac{s_{data}}{S_{data}} \frac{a}{A_0} \cos\left(\theta - \frac{\pi f_m}{f_{clk}}\right)$$

- Revised accurate model
 - No closed-form expression exists
 - Solve non-linear equation (i) without making approximations
 - Follow derivation steps of simple model

Timing Model versus HSPICE

- Confirms intrinsic compensation effect
- Reduces modeling error from 25ps to 8ps (5% to 1.6% T_{clk})

Timing Model versus HSPICE

- Revised simple model good for first order approximation
- Reduces modeling error from 30ps to 4ps (6% to 0.8% T_{clk})

Presentation Agenda

- Resonant Noise and Timing
- Overview of Beneficial Jitter Effect
- Timing Models and 65nm Simulations
- Phase-Shifted Clock Distribution
- Conclusions

Intrinsic Beneficial Jitter Effect

- Beneficial jitter effect can be harnessed further
 - Datapath delay depends on instantaneous V_{dd} value.
 - Clock period depends on V_{dd} value <u>difference</u> seen by two consecutive clock edges.
 - Worst delay point does not coincide with max clock period point

Enhancing *Beneficial Jitter* Effect Using Phase-Shifted Clock Distribution

- Phase-shift the clockpath supply noise
- Clock period can be stretched out the most when the worst case datapath delay occurs

Phase-Shifted Clock Buffer Design

- New clock buffer with built-in RC filter
- Optimal RC value selected using the revised timing models to enhance beneficial jitter effect
- *IR* drop < 50mV

Calculation of Optimal Phase Shift

- Intuitive explanation
 - $\frac{f_{res}\pi}{f_{cr}}$: Phase difference caused by clock path delay
 - $\frac{\pi}{2}$: Phase difference between largest slope point and lowest supply point
- Revised simple model used assuming ideal phase shift

Timing Slack Improvement

- 75ps (or 15% T_{clk}) slack improvement
- Phase-shifted clock distribution keeps timing slack positive ensuring correct operation

Effectiveness for Wide Band Noise

- Phase-shifted design most effective for typical resonant frequency range
- Does not affect performance for other noise frequencies

Partial Phase-Shifted Clock Distribution

- Using phase-shifted clock buffers only in the global clock network still improves timing slack
- Effectiveness of phase-shifting technique can be traded off for die area

Results Summary

Resonant Noise	200MHz
Clock Frequency	2GHz
Intrinsic Decap C*	6nF
Package Inductance L*	0.1nH
Load Current*	1A
R in RC Filter	300 Ω
C in RC Filter	2pF
Phase Shift	0.2π
Slack Improvement	75ps (15% <i>T_{clk}</i>)
Equivalent Decap	24nF
Decap Saving	80%

65nm, 25°C, 1.2V V_{dd} , 12% V_{dd} noise 0.2π 1.35 IR drop; () 1.30 1.25 1.20 1.15 1.15 1.05 50mV Noisy V_{dd} Phase-shifted 1.05 Vdd 1.00L____ 14 22 18 26 30 Time (ns)

*The L, C and load current values are scaled down proportionally to account for the smaller clock tree used in our test setup.

Conclusions

- Resonant noise is an important concern for power supply network designs
- Inherent timing compensation between clock and data improves timing slack
- Timing models proposed to accurately describe this *beneficial jitter* effect
- Phase-shifted clock distribution proposed
 - Enhances beneficial jitter effect
 - Slack improvement by 15% T_{clk}
 - Performance equivalent to 5X larger decap