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Power Supply Noise

IR and Ldi/dt noise:
Typically around 10~15% nominal V ,

- Lower V_, larger I, higher f_,
Worsening supply noise with scaling

 Problems due to supply noise:
Timing, noise margin, reliability, etc
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Resonant Supply Noise

N. Na, IBM, ECTC 2004

fres Supply [Network w/
esonant Frequency
.20 /R
I

Decaps + | v : * = %: -60 : I\./A\/\V\
@%Tl\ /_L@ 5 -80 : : \
TN DT ool '

+ ¥ d < 10M 100M 1G 10G
Frequency (Hz)

- Typical resonant frequency VI g _
is 50-300MHz 1.6+ ﬂ |

« Excited by processor loop 1: v W W%}WWMWW
operation or current spike 120-\/

« Large magnitude and long O e 50 50 20 50 60
duration affects the whole chip . Time [ns]



LINIVERSITY OF MINNESOTA

Passive Resonance Suppression

Increase on-chip decap Increase on-chip resistance
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- Q factor signifies impedance peak G. Ji, et al., T. Adv. Packaging, 2005
* Penalty for bringing down Q factor:

— TR: Extra IR drop and power

— 1C: Area and leakage overhead
« Can resonant noise be utilized to improve circuit timing?
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Timing Slack in Datapath

 Timing margin between clock period and

datapath delay
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* Positive slack means correct operation
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Beneficial Jitter Effect: Natural Timing
Compensation Between Clock and Data
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- Traditional analysis considers datapath delay only
* In reality, both datapath delay and clock period varies
with supply noise
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Beneficial Jitter Effect Simulation

fes=200MHz,f.,=1GHz,f,=2GHz, s | : Sqara =0.7:1
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* Inherent timing compensation between clock and data

* 25ps (or 5% T_,) slack improvement when considering
beneficial jitter effect
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Factors Affecting Beneficial Jitter Effect

11
[

Y
Clockpath delay: t.,

« 0..: Supply noise phase at clock launch
-t or 1/ f,: Clock path delay

* Sak>Saua : Delay sensitivity to supply
— Change in speed with respect to supply variation
- E.g. If 10% Vdd change causes 15% speed change, sis 1.5

* /.- Resonant frequency
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Impact of Clock Path Delay

fres=200MHz, fc|k=2 GHZ, 8c|k: Sdata - 0-7: 1

0
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« Optimal clock path delay exists

— Small f_,: Approaches clean clock case

65nm, 25°C,
1.2V V q
12% V44 Noise

— Large /., : Average supply voltages seen by clock edges closer

« Up to 58ps (11.6% T,,) slack improvement with proper /,,
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Impact of Delay Sensitivity

fres=200MHZ, fcp=1 GHZ, fc|k=2GHZ 65nm. 25°C

1.2V Vyq
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« Typical clock path delay sensitivity is around 0.6 due to
interconnect RC delay

* Much larger (or much smaller) sensitivity worsens
timing slack
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Impact of Resonant Frequency

f0=1GHZ, fc|k=2GHZ, Scik « Sdata — 0.7:1
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« Beneficial jitter effect prominent in typical resonant
frequency range

 Up to 87ps (11.6% T_,) slack improvement
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Beneficial Jitter Effect Modeling

Y.
Y, D,SA, D,,t,: Nominal/actual delay
mmmmmmmmmmm t SA . 4t L } (te-DO)SAO . .
Q e>10 | I Y, : Nominal distance
% trajectory due ; : dSA,
+ to constant v(t) ™, . A,,a: DCIAC supply voltage
e 9
trajectory due 1| S, s : Delay sensitivity
to modulated v(t) ; :
o . g [WRMO06] K. L. Wong, et al.,
Time JSSC 2006

« Adopted methodology from [WRMO06]

* Propagating signal represented as traveling wave with
speed X supply voltage

* Propagation delay equivalent to traveling distance
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Beneficial Jitter Effect Modeling

Mathematical derivations:

Y, = [ Sdydt = SA,t,

Y, = J‘Ot [SA4, + sa cos(w,t —6)]dt (i)

Previous model [WRMO06]

slack (0) = S 28 S o oy i
Sclk AO 7#‘111 clk

Revised simple model
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Revised accurate model
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— No closed-form expression exists
— Solve non-linear equation (i) without making approximations
— Follow derivation steps of simple model

f clk S data AO

clk
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Timing Model versus HSPICE
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« Confirms intrinsic compensation effect
* Reduces modeling error from 25ps to 8ps (5% to 1.6% T_,)
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Timing Model versus HSPICE

fres=200MHz, f,x,=2 GHz, Sk :Sqata =0.7:1 65nm, 25°C,
0 1.2V V4
) Model from 12% V4 noise
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* Revised simple model good for first order approximation
* Reduces modeling error from 30ps to 4ps (6% to 0.8% T_,)
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Intrinsic Beneficial Jitter Effect

A: Worst Datapath Delay

Supply Noise
on Datapath

Datapath
Output

Supply Noise
on Clockpath

Clock Edge

« Beneficial jitter effect can be harnessed further
— Datapath delay depends on instantaneous V, value.

— Clock period depends on V,, value difference seen by two
consecutive clock edges.

— Worst delay point does not coincide with max clock period point
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Enhancing Beneficial Jitter Effect
Using Phase-Shifted Clock Distribution

A: Worst Datapath Delay

Supply Noise
on Datapath

Output =

PhaseShift 9: g. yaximum Clock Compensation

Supply Noise
on Clockpath

Clock Edge

* Phase-shift the clockpath supply noise
* Clock period can be stretched out the most when the

worst case datapath delay occurs
21



Phase-Shifted Clock Buffer Design

Clock Path = e,
Datapath

VDD VDD VDD
A —'AI;}D-D*— K
vy ¥ l -------------------------------------

« New clock buffer with built-in RC
filter

« Optimal RC value selected using
the revised timing models to
enhance beneficial jitter effect

* IR drop < 50mV W=

15.5um
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Calculation of Optimal Phase Shift

es=200MHz

o
»

E
£ 0.3
s T 5, \
7))
fcp ¢Shlﬁ 2 ;fu 0.1 \\
E 0 N
S 04

1 2 3
Clock Path Delay t., (ns)

(=1

. Intuitive explanation
: Phase difference caused by clock path delay

: Phase difference between largest slope point and
Iowest supply point

 Revised simple model used assuming ideal
phase shift
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Timing Slack Improvement

fres=200MHz, f.x=2 GHz,f.,=1 GHz, Scik: Sqgata=0.7:1 65nm, 25°C,
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* 75ps (or 15% T_,) slack improvement

 Phase-shifted clock distribution keeps timing slack
positive ensuring correct operation
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Effectiveness for Wide Band Noise

fcp=1 GHz,fc|k=2 GHZ, Sc|k :Sdata =0-7:1
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 Phase-shifted design most effective for typical resonant
frequency range

 Does not affect performance for other noise frequencies
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Partial Phase-Shifted Clock Distribution

fres=200MHz, fc|k=2 GHZ, fcp=1 GHZ, Sc|k . Sdata = 0-7:1
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Number of Stages Using Phase-
shifted Buffers (total 11 stages)

+ Using phase-shifted clock buffers only in the global
clock network still improves timing slack

- Effectiveness of phase-shifting technique can be traded
off for die area

26



LUNIVERSITY OF MINNESOTA

Results Summary

65nm, 25°C, 1.2V V4, 12% V44 noise

0.2

14 18 22
Time (ns)

Resonant Noise 200MHz
Clock Frequency 2GHz
Intrinsic Decap C* onF
::ladcukcatgflce L* 0.1nH
Load Current* 1A

R in RC Filter 300 Q
C in RC Filter 2pF
Phase Shift 0.2m
?nllapilc()vement 79ps (15% Tgy)
Equivalent Decap 24nF
Decap Saving 80%
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*The L, C and load current values are
scaled down proportionally to account

for the smaller clock tree used in our

test setup.
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Conclusions

 Resonant noise is an important concern for
power supply network designs

* Inherent timing compensation between clock
and data improves timing slack

 Timing models proposed to accurately describe
this beneficial jitter effect

 Phase-shifted clock distribution proposed
— Enhances beneficial jitter effect
— Slack improvement by 15% T,

— Performance equivalent to 5X larger decap
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