Sleep Transistor Sizing and Control for Resonant Supply Noise Damping

Jie Gu, Hanyong Eom, and Chris H. Kim

University of Minnesota Department of Electrical and Computer Engineering

> jiegu@ece.umn.edu www.umn.edu/~chriskim/

Outline

- Introduction
- Conventional Sizing of Sleep Transistors
- Sleep Transistor Sizing Considering Resonant Supply Damping
- Adaptive Sleep Transistor Circuit
- Conclusions

Sleep Transistor Sizing

- Tradeoff between performance, leakage and area
- Conventional wisdom: use larger sleep transistors to improve performance
- Considers only IR droop
- Ignores the Ldi/dt noise, especially resonant supply noise

Resonant Noise of Supply Network

- Resonant noise has largest magnitude and longest duration
- Causes severe timing violation and reliability issues
- Excited by µP loop operation or large current transient

Passive Suppression of Resonance

- Decap consumes large leakage and area
- Adding resistors results in extra IR droop and power
- Damping effect of sleep transistors is not considered

UNIVERSITY OF MINNESOTA

Sleep TR Sizing Considering Resonance

- Conventional Sizing: **DC** Noise
- Proposed Sizing: DC Noise + Resonance
- Sizing has little impact on high freq noise

6

Simulation Setup and Waveforms

PTM 32nm CMOS, 0.9V

- Resistor used to generate DC noise
- Ideal current source used to generate AC noise
- 33% smaller sleep TR helps damp resonant noise by 24%

UNIVERSITY OF MINNESOTA

Sizing Results for Both DC and Resonant Noise

$$V_{total_noise} = V_{dc_noise} + V_{ac_noise} = I_{dc} \cdot R_{sleep_tr} + I_{ac} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} \cdot C \longrightarrow R_{sleep_tr} = \sqrt{\frac{dc}{I_{dc}}} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} = \sqrt{\frac{dc}{I_{dc}}} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} = \sqrt{\frac{dc}{I_{dc}}} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} = \sqrt{\frac{dc}{R_{sleep_tr}}} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} + \frac{R_{sleep_tr}}{R_{sleep_tr}} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} = \sqrt{\frac{dc}{R_{sleep_tr}}} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} = \sqrt{\frac{dc}{R_{sleep_tr}}} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} + \frac{R_{sleep_tr}}{R_{sleep_tr}} \cdot \frac{R_{sleep_tr}}{R_{sleep_tr}} + \frac{R_{sleep_tr}}{R_$$

- Largest size is no longer optimal for minimum noise
- Proposed optimal sizing leads to
 - 19% less worst-case noise
 - 69% less area overhead
- Optimal point depends on the ratio of DC and AC current

Test on Benchmark Circuit

- 30 x 8-bit ALU (C880, ISCAS85, 383 gates) at 100MHz
- Proposed optimal sizing leads to
 - 17% less worst-case noise
 - 58% less leakage in sleep mode
 - 60% smaller area overhead

Adaptive Sleep Transistors

Fixed Sleep TR Switching Sleep TR

- Fixed Sizing
 - Sacrifices DC supply noise
 - May lose the average performance if resonant noise is sporadic
- Adaptive Sizing
 - Reduces size only when resonance is detected
 - Minimizes both DC and resonant supply noise

UNIVERSITY OF MINNESOTA

Digital Resonant Detection for Adaptive Sizing

- Noise detection BW: 10MHz~600MHz, over power: 0.36mW
- Responds to supply overshoot only to avoid IR droop
- Adjustable switching threshold V_{sw}

Noise Reduction by Adaptive Sizing

- Suppression in both undershoot and overshoot
- 32% resonant noise reduction
- No increase in DC noise when resonant noise is absent

Noise Reduction by Adaptive Sizing

- 17% noise reduction from adaptive sizing over fixed sizing
- 39% reduction over conventional sizing
- Design overhead is offset by decap saving (20%)

Conclusions

- Conventional sleep TR sizing does not consider the resonant noise which represents the worst-case noise
- This work proposes a sizing scheme considering both DC IR noise and resonant supply noise with:
 - 19% less worst-case supply noise
 - 42% leakage reduction
 - 69% smaller sleep transistor overhead
- An adaptive sleep transistor circuit is proposed:
 - Removes DC noise penalty of fixed sizing with sporadic resonant noise
 - Leads to 32% less resonant noise
 - Achieves 17% less worst-case supply noise compared to fixed sizing

Resonance Suppression by Circuits

Switched decap regulator

Clock frequency ramping

R. Heald et al., Sun Microsystem, JSSC 2000

- Circuits techniques are costly in terms of power (i.e.
 0.5A for switched decap regulator), die area, and design complexity
- Sleep transistor for damping has not been considered