An On-Chip NBTI Sensor for Measuring PMOS Threshold Voltage Degradation

John Keane, Tae-Hyoung Kim, and Chris H. Kim

University of Minnesota
Department of Electrical and Computer Engineering

jkeane@ece.umn.edu

Presentation Agenda

- Introduction to Negative Bias Temperature Instability (NBTI)
- Prior NBTI Sensors
- Proposed DLL-Based NBTI Sensor
- Measurement Results
- Conclusions

Introduction to NBTI

(Vq-Vs) = 0

Vs = VCC

p+

n+

Vq = VCC

ΗЧ

Si Si Si Si

Vd = 0

p+

'n+

- Channel holes interact with Si-H bonds at interface
 - Interfacial traps and oxide trapped charges are created
- Causes an increase in |Vtp|
 - Expect up to ~20-30% increase in ten years
- Partial recovery occurs when PMOS is turned off
 - Dangling bonds passivated and oxide trapped holes are released

Stress and Recovery

- ΔVtp partially recovers when stressed PMOS is turned off
- AC stress increases lifetime projection
 - Makes measurements more difficult
 - Recovery occurs *during* each reading
- Increasing field and temperature, reduced gate overdrive reintroduce NBTI concerns in the late 90s

NBTI Impact on Digital Circuits

Logic circuits

- F_{MAX} degrades
- Leakage power reduces
- Critical path can change

- Read margin worsens
- Write stability improves
- Read delay remains the same
- NBTI affects critical circuit parameters
- Must account for NBTI-induced shifts during the design phase

Prior NBTI Sensors

- Fernandez et al. used ROSCs to generate AC stress onchip for better signal integrity. (IEDM, Dec. '06)
- Kim et al. detected the beat frequency between stressed and unstressed ROSCs for high resolution and fast measurements (VLSI Circuits Symposium, June '07)
- Ketchen et al. also used beat frequency concept, and designed ROSCs with a new delay stage for pure NBTI stress (ICMTS, March '07)
- Shen et al. proposed 100ns I-V measurement (IEDM, Dec. '06)

Proposed NBTI Aging Sensor

- DLL control voltage adjusts to lock VCDL into phase with the reference clock
- Stressed Stages slow with NBTI stress; Unstressed Stages must speed up to match reference clock
 - Translate ΔVtp into control voltage of bottom DLL, $\Delta V_{control_bottom}$
- System facilitates both DC and AC stress, as well as 20us+ measurement times

NBTI Measurement Gain

- We achieve a gain of up to 16X in the translation of $\Delta V tp$ to $\Delta V_{control_bottom}$
- Adjust gain by tapping a particular output from the Unstressed Stages
 - Get larger gain with fewer Unstressed Stages
- ΔVtp is directly proportional to ΔV_{control_top} with respect to Stressed Stage delay, allowing for system calibration

Stressed Stage Buffer Design

- $\Delta V tp$ is directly proportional to $\Delta V_{control top}$
 - Both have ~same effect on buffer delay
 - Delay ∞ Current ∞ (Vgs –Vtp)
- This relationship allows us to calibrate the sensor
 - Turn off top DLL and manually adjust V_{control_top}
 - Monitor the corresponding change in V_{control_bottom}

Stress Switches

- 0V during measurement period
- VCC! during DC stress
- AC signal up to 50MHz during AC stress
- V_{minus} is set at -2V to pass the ≥-1.2V V_{stress} signal
 - Accelerated stress conditions

DLL Locking Time

- Bottom DLL locks quickly (<20µs)
- Small phase offset after control voltage settles (<80ps)
- Facilitates fast measurements after stress conditions are removed

Test Chip Characteristics

	Decoupling Capacitor	Concert		
2 Output Buffers	Top Loop Filter	p Loop Filter CDL Ref. Delay tom Loop Filter CDL Ref. Delay Stress ROSC Sensor Sensor Sensor tom Loop Filter CDL Ref. Delay Stress ROSC Sensor Sensor tom Loop Filter CDL Ref. Delay Sensor Sensor Sensor		
	Top VCDL			
	Bottom VCDL Delay			Neo to
	Bottom Loop Filter			RAT
	Top Loop Filter		Technology	0.13µm CMOS
			Supply	1.2V
	Bottom VCDL Delay		Dimensions (2 instances grouped)	545µm x 510µm
	Bottom Coop Finter		Max Sensing Gain	16X

- 130nm test chip fabricated by UMC
- Multiple circuit instances placed on each chip
 - Devices may never fully recover from stress
 - Each system can only be measured once

NBTI Test Chip Gain

- Recall that ΔVtp in stressed buffers is $\propto \Delta V_{control top}$
- Sweep $V_{control_top}$ and read $\Delta V_{control_bottom}$ to find system gain from ΔVtp to $\Delta V_{control_bottom}$
 - Max gain of 16X in the operating region
- Polynomial fit to the gain plot
 - Used this equation to translate $\Delta V_{control_bottom}$ reading to $\Delta V tp$ for each sensor

Test Chip Measurements

- System facilitates measurements over a range of Vgs
- Power law exponents in 0.1 range match well with recently presented results
- Threshold degradation shows exp. dependence on Vgs

Test Chip Measurements

- Left Plot: Increased degradation with temperature
- <u>Right Plot</u>: Increase in power law exponent is observed with longer measurement (recovery) periods

Test Chip Measurements

- Stress/Recovery curves demonstrate fast recovery
 - Also found by C. Shen and T. Kim with high-speed measurements
- ΔVtp does not fully recovery in ~1000s at 25C

Conclusions

- There is a great need to develop reliable degradation
 models to avoid wasteful over-design methods
- Fast measurement times are critical for accurate NBTI characterization
- We have implemented an NBTI degradation sensor capable of measurements in tens of microseconds
 - Directly map the measured parameter to $\Delta V tp$
 - Facilitates DC and AC stress states
 - Max gain of 16X in ΔVtp measurement
 - Measurements demonstrated for a range of stress voltages, temperatures, and measurement times