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ABSTRACT 
Statistical behavior of device leakage and threshold voltage 

shows a strong width dependency under microscopic random 
dopant fluctuation.  Leakage estimation using the conventional 
square-root method shows a discrepancy as large as 45% compared 
to the real case because it fails to model the effective VT shift in 
the subthreshold region.  This paper presents a width-dependent 
statistical leakage model with an estimation error less than 5%.  
Design examples on SRAMs and domino circuits demonstrate the 
significance of the proposed model. 
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1. INTRODUCTION 
Leakage has become one of the major bottlenecks for device 

scaling in nanometer scale CMOS technologies [1].  Systematic 
and random process variations also worsen in sub-45nm 
technologies causing the leakage distribution to become wider.  It 
has been reported that leakage can vary by more than 10X between 
devices on a same die because of its exponential dependency on 
threshold voltage (VT) [2].  The major contributors to intrinsic VT 
variations are the doping density variation [3], the gate oxide 
thickness variation [4], and the device dimension variation [5].  
Leakage is also sensitive to environmental factors such as supply 
voltage and temperature which makes its variation even worse.  
The intrinsic and environmental leakage variation dictates the 
amount of power that can be utilized for useful computation which 
in turn negatively impacts the performance of high-speed VLSI 
systems.  

Leakage and its variation can also cause serious functionality 
issues in leakage sensitive circuits such as SRAMs and domino 
gates.  SRAM read operation relies on a sufficient on-current to 
off-current ratio for proper bitline sensing.  Increased bitline 
leakage from the unaccessed cells in large SRAM arrays can lead 
to a significant bitline delay penalty [6]. In domino circuits, the 
excessive leakage can cause false evaluations as the keeper 

may fail to satisfy the robustness requirements under worst-case 
conditions [7].   

To design robust and energy efficient circuits in the presence 
of large leakage variation, it is crucial for circuit designers to 
accurately model the statistical leakage behavior.  Many 
mathematical models have been proposed in the past to obtain an 
accurate leakage distribution based on given process inputs (VT 
variation, channel length variation, etc).  Chang et al. performed a 
statistical full-chip leakage analysis considering both inter-die 
and intra-die spatial correlation using Wilkinson’s method [8].   
Acar et al. used the inverse gamma distribution to model full-chip 
leakage distribution and showed a close match between their 
model and hardware measurements [9].  More recently, Gu, et. al 
proposed a statistical leakage model for width-quantized FinFET 
devices [10].  Here, the authors have considered the fact that the 
number of fins in a single FinFET device affects the leakage 
modeling results.  

An important point that has not been addressed in prior work 
is the fact that devices with different widths have different VT 
means and standard deviations due to the random dopant 
fluctuation (RDF) within a single device.  This so called “random 
dopant induced VT shift” has been observed by researchers in the 
electron devices community through 3D TCAD simulations 
[11,12].  This phenomenon is due to the following two reasons.  
 The placement of dopants is random even within a single 

device.  We refer to this as the “microscopic” RDF.  A single 
device must therefore be regarded as a group of “infinitesimal 
sub-devices” each having normal VT distributions.  

 Device leakage current is the sum of all the infinitesimal sub-
device leakage currents which have a lognormal distribution.  
The mean and sigma of the sum of lognormal distributions is 
significantly different from the mean and sigma of the original 
lognormal distribution.  

As a result, a lower mean value and a lower standard 
deviation value are observed for the VT of a larger device.  Note 
that the definition of VT in this discussion is based on the sub-
threshold region (i.e. Vgs @ Ids=1µA/µm) and not the strong-
inversion region (i.e. Vgs @ max gm) [13].   

A common way to model the standard deviation for larger 
devices is using the well-known “square-root method” which 
states that the standard deviation of VT is inversely proportional 
to the square-root of the gate area [14].  However, this method 
has fundamental limitations.  First, the definition of VT is based 
on the strong-inversion region and hence the method cannot be 
applied to estimating leakage distributions which are lognormal 
variables.  Also, it does not account for any spatial correlation 
within the device [15].  These limitations lead to an inaccurate 
leakage estimation using the conventional square-root model.    

In this work, we propose a simple yet accurate model to 
account for the random dopant induced VT shift for statistical 
leakage estimation.  The highlights of this work are as follows.  
 For the first time, a statistical leakage model is developed that 

accounts for the width-dependent VT shift in CMOS devices 
caused by microscopic RDF.   
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 Unlike previous methods that can only be used for devices with 
quantized widths, the proposed leakage model can be used for 
an arbitrary device width.  The spatial correlation within a single 
device can also be handled. 

 Estimation accuracies of both the proposed and conventional 
methods are compared for different device widths, VT standard 
deviations, and correlation coefficients.  

 Design examples of leakage sensitive circuits using the proposed 
model are presented. 

The organization of this paper is as following.  In section 2, 
the discrepancy between the conventional method and the actual 
case is discussed to motivate our work.  Section 3 proposes a 
mathematical model to accurately handle the width-dependent 
leakage and VT shift.  Section 4 presents experimental results to 
verify the accuracy of the developed model.  Design examples of 
leakage sensitive circuits such as SRAMs and domino circuits are 
presented in section 5.  Finally, section 6 draws a conclusion.  A 
predictive 32nm CMOS technology model was used for this work 
[16]. It is important to mention that although RDF is assumed to be 
the major source of variation in this work, the model developed in 
this paper is actually general to any type of process variation which 
may include both random and spatial-correlated components. 

2. CONVENTIONAL STATISTICAL 
LEAKAGE MODEL AND ITS 
LIMITATION 
Equation (1) shows the conventional model for statistical VT 

estimation which will be referred to as the square-root method.  
Here, the mean of VT is a constant and the standard deviation of VT 
is inversely proportional to the square-root of the gate area. 
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Although equation (1) has been widely used as a basis for 
delay estimation, it cannot properly model the device leakage 
under the impact of microscopic RDF.  To motivate our work, we 
will first explain why the conventional square-root method fails to 
capture the actual (golden) case.  Fig. 1 (a) shows the simulation 
setup with progressively sized inverters for the delay and leakage 
experiments.  We assume that the mean and sigma have been given 
for a reference device with a width of W0 (60nm) and a channel 
length of 32nm. The NMOS device of the middle 4x inverter has a 
width of 4W0 and is simulated by putting four reference devices in 
parallel.  The golden results are obtained as described in Fig. 2 by 
assigning four independent random variables VT to each reference 
device to represent the microscopic RDF effect.  Monte Carlo 
simulations are performed in HSPICE to find out the delay and 
leakage distribution of the middle inverter.  The conventional 
square-root method uses a single effective VT with the mean and 
sigma values calculated from equation (1).  Leakage variation of 
the device can be expressed using this single effective VT as shown 
in Fig. 2.  Monte Carlo simulations were performed in HSPICE for 
the square-root method as well.  Fig. 1(b) and Fig. 1(c) show the 
simulated results.  From Fig. 1 (b), we find that the delay 
distribution using (1) matches very closely with the golden results.  
The square-root method was originally developed to model the VT 
defined for the strong-inversion current which is a linear 
combination of the VT’s of sub-devices affected by the 
microscopic RDF [17]. The concept of sub-devices to account for 
the RDF inside a larger device is illustrated in Fig. 2 under the 
golden case.  As a result, circuit parameters such as delay which 
are also approximately a linear function of VT can be correctly 

modeled using equation (1). This observation is consistent with 
the results shown in previous publications [18].   

On the other hand, Fig. 1(c) shows a large discrepancy in 
leakage distributions between the two approaches.  The 
conventional VT model in equation (1) fails to predict the golden 
leakage distribution, underestimating the 3σ leakage current by 
32%.  This tells us that the effective VT following equation (1) 
does not work well for estimating the leakage distribution.  This 
discrepancy comes from the fact that leakage current is an 
exponential function of VT and therefore the simple solution in 
equation (1) does not hold true for a sum of lognormal variables 
considering the microscopic RDF.  The above simulation assumes 
no spatial correlation within a single device.  As will be shown in 
the paper, the conventional scheme shows a poor leakage 
estimation result when spatial correlation is included.  

 
(a) 

 
  (b)    (c) 

Fig. 1 Comparison between conventional square-root method 
and the actual (golden) case. (a) Simulation setup; (b) Delay 
distribution; (c) Leakage distribution. 

 

 
Fig. 2 Statistical leakage model comparison between the 
golden, square-root method, and proposed method. 

 
Based on the above observations, this paper will focus on 

developing an accurate leakage distribution model which captures 
the width-dependent characteristics of the leakage caused by RDF 
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in a nanoscale CMOS device.  One assumption used in this paper 
is that a large device can be considered as a group of smaller 
devices by ignoring any fringing effect at the device boundary.  
This is a reasonable assumption for a relatively large device.  For 
minimum width devices where narrow width effect [19] and other 
fringing effects may not be ignored, our model can be adjusted to 
account for those situations.  For simplicity, we only consider 
devices with a fixed minimum channel length in this paper.  In a 
real design, the derived model can be easily expanded to a look-up 
table for handling circuits with multiple channel lengths. 

3. PROPOSED STATISTICAL LEAKAGE 
MODEL 
The goal of a statistical leakage estimation tool is to obtain an 

accurate leakage distribution of a device, circuit block, or full-chip 
system based on process inputs such as the VT mean and VT sigma 
of a reference device.  Fig. 2 illustrates how the proposed approach 
is different from the conventional square-root method.  Both the 
proposed and square-root methods introduce an effective VT to 
represent the device leakage variation using a single variable.  
However, unlike the square-root method, the mean and sigma of 
VT in the proposed method is expressed as a function of the device 
width W as well as the two other inputs (mean and sigma of  
reference device VT) to match the actual case.  The following 
derivation will show how the actual leakage, which is a sum of 
lognormal distributions, can be precisely modeled using a single 
effective VT parameter with a new mean and sigma.   

Leakage current of a MOSFET can be expressed as: 
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where m is the subthreshold slope coefficient, q is the electron 
charge, T is the temperature, and k is the Boltzmann’s constant.  
The term )q/kT/(Vdse− can be ignored as Vds is greater than 3kT/q 
which is 78mV at room temperature.  For simplicity, a constant B 
is used to represent q/mkT in the following derivation.  VT is a 
Gaussian variable determined by the effective length Leff, dopant 
concentration Nd, oxide thickness Tox, etc.  In this work, we also 
consider the correlation between the VT of any two devices.   

The problem can be now formulated as:  Given the mean TxVµ  

and sigma TxVσ of VT for a reference device having a width of Wx, 

find the mean and sigma value of the effective VT for a device with 
width Wy that matches the actual (golden) case given in Fig. 2.  
We will first derive a leakage model assuming an integer 
multiplicative factor between Wy and Wx, i.e. Wy=nWx.  We will 
later extend the model to a rational number multiplicative factor 
case in section 3.2.  

3.1 Leakage model for discrete width multiplication       
(Wy=nWx, n: integer) 

Let VTy be the effective VT of a device with a width of Wy.  

TxVµ  and 
TxVσ are given parameters where VTx is the VT of a 

reference device with a width of Wx.  The total device leakage can 
be expressed as: 
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Wy is equal to nWx and 
iTxV represents the VT of each reference 

sub-device considering the microscopic RDF.  The mean and 
sigma of VTy in equation (3) can be expressed using the mean and 
sigma of VTx using Wilkinson’s method which shows that a sum of 

lognormal variables can be approximated to another lognormal 
variable [20].  For simplicity, we define (µx, σx) as the mean and 
sigma of the reference device Gaussian variables )VB(

iTx⋅−  and 

(µy, σy) as those of the total device Gaussian variable )VB( Ty⋅−  

in equation (3).  We also assume that a correlation coefficient rx 
between two reference device Gaussian variables )VB(

iTx⋅− is 

given to model the spatial correlation.  Wilkinson’s method 
allows us to equate the first moment and second moment of the 
two lognormal expressions in equation (3) as follows: 
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Solving equation (4), we find the following relationship: 
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number.  By plugging in the constant B, we obtain the following 
relationship between the VTx and VTy: 
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Equation (6) shows that the mean value of the effective VT is 
reduced by B/

2
1 ∆ , which is consistent with our observation in Fig. 

1(c) showing that the golden case has a higher average leakage 
compared to results from the conventional square-root method.  
The sigma value goes down according to (6) following a similar 
trend as the square-root method but giving a closer match with 
the golden case.   

Note that the correlation coefficient ry between VTy of two 
devices is no longer equal to the rx value of the reference device 
because the device dimensions have changed.  An expression for 
ry is needed to extend the model for the continuous width 
multiplication case in section 3.2.  Hence, we show the derivation 
of ry in the remainder of this section.  Leakage currents of two 
new devices with equal sizes can be described as: 
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In order to find the correlation coefficient ry between VTy1 and 
VTy2, we can equate the correlation coefficient of the left-hand 
sides to that of the right-hand sides in (7).  First of all, the 
correlation coefficient of the right-hand sides of (7) is: 
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Secondly, the correlation coefficient of the left-hand sides of (7) is: 
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By equating (8) and (9) and plugging in the relationship between 
TxVσ and 

TyVσ  in (6), we find that: 
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One can also easily prove that 1≥ry≥rx and that ry=1 only when 
rx=1.  Equation (10) shows an interesting observation. As devices 
become larger, the correlation coefficient between VT of the 
devices also increases.  This is because as dimensions increase, the 
uncorrelated variation components quickly average out leaving 
only the correlated variation components to appear in the overall 
leakage distribution.   

3.2 Leakage model for continuous width multiplication 
(Wy=αWx, α: positive rational number) 

Wilkinson’s method cannot be directly applied to solve for 
the continuous width case: i.e. given TxVµ  and TxVσ of VTx for a 

device with width Wx, find the TyVµ and TyVσ of VTy for a device with 

width Wy where Wy=αWx and α is a positive rational number.  
To solve this problem, we assume there exists a virtual 

reference device with width W0 that satisfies both Wx=mW0 and 
Wy=nW0.  Note that α becomes n/m.  0TVµ , 0TVσ , and r0 denote 
the mean, standard deviation, and correlation coefficient of VT for 
the small virtual device.  Now we can utilize the results from 
section 3.1 to carry out our derivation.  From equation (6), we have: 
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Solving equations (11) and (12) and applying results from equation 
(10), we finally find the relationship: 
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Equations (13) and (14) have the exact same format as equations 
(6) and (10).  This tells us that the same formulas can be applied 
to both discrete and continuous width cases.  Although we started 
our derivation using a small reference device with a width of Wx, 
equations (13) and (14) can be used to relate the VT 
characteristics between any two devices with  arbitrary widths, i.e. 
α can be either larger than 1 or smaller 1.  In other word, the 
derived model can accurately estimate the leakage distribution of 
an arbitrary width device based on given process inputs for a 
reference device with any width value.  Note that the above 
derivation is not specific to a certain type of variation.  Therefore, 
the proposed model is general to any process variation sources 
although RDF is considered as the major cause of variation in this 
work. The next section will prove the accuracy of the proposed 
model in (13) and (14). 

4. EXPERIMENTAL RESULTS 
Monte Carlo simulations were performed to compare the 

proposed model with the conventional square-root method.  The 
mean and standard deviation values of the reference device were 
given and multiple reference devices were combined to form a 
larger device.  This setup allows us to verify the leakage 
distribution for the discrete width multiplication case.  Due to the 
lack of TCAD tools to model the RDF induced VT shift for the 
continuous width multiplication case, we simply extrapolate the 
results from the discrete case to a continuous case.  Both the 
theoretical analysis and simulation results exhibit no distinction 
between the continuous and discrete width multiplication cases.   

 
 

Fig. 3 Statistical leakage estimation results for the golden case, 
conventional method, and proposed method.  (top row: 
different device widths, middle row: different sigma values, 
bottom row: different correlation coefficients).  
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Fig. 3 shows the leakage distribution comparisons for 
different widths, different VT sigma’s, and different correlation 
coefficients.  The proposed method is compared to the 
conventional square-root method as well as the golden method.  3σ 
points on the leakage distributions are marked as a measure of the 
estimation error.  Our proposed method shows a much closer 
match (less than 5% in most cases) with the golden results while 
the conventional square-root method exhibits discrepancies as 
large as 45%.  Note that a slightly larger error (12%) is observed 
for our proposed method when the sigma of the reference device 
VT is high (Fig. 3, middle right).  This stems from the increased 
error in the Wilkinson’s approximation for Gaussian variables with 
large standard deviations as mentioned in [20].  Even with this 
error due to the limitation of Wilkinson’s method, the proposed 
method still shows a much better fit than the square-root method.  
Since the intra and inter-die VT variation is normally controlled 
well below 30%, our model is capable of generating accurate 
results in a realistic CMOS process. 

Fig. 4 shows the estimated mean and sigma values of the 
effective VT for a continuous range of device widths.  For larger 
devices, the mean value of the effective VT estimated by the 
proposed method is significantly less than that predicted by the 
square-root method.  The difference between the estimated sigma 
values was less significant.  This observation is consistent with 
what was reported in [11].  Our model summarized in (13) explains 
the statistical reason behind these physical observations and 
provides a solution for accurate estimation.   

 
Fig. 4 Estimated mean (top) and standard deviation (bottom) 
of effective VT versus normalized device width.  

5. DESIGNING LEAKAGE SENSITIVE 
CIRCUITS USING PROPOSED MODEL 
As mentioned in the introduction, accurate device leakage 

modeling is important for estimating the chip power consumption, 
but is also crucial for optimal design of leakage sensitive circuits 
such as SRAMs and domino circuits.  This section shows design 
examples using the proposed leakage model for high performance 
circuits in nanometer CMOS technologies. 

5.1 SRAM design: Bitline leakage problem 
Bitline leakage from unaccessed cells in SRAM bitlines has 

been recognized as a major cause of read failure in low voltage 
SRAMs [6].  Fig. 5(a) illustrates the worst-case situation where the 

bitline leakage causes significant increase in read access delay.   
Suppose the SRAM cell being accessed stores a ‘1’ and all the 
other cells attached to the same bitline contain a ‘0’.  While BL is 
being discharged by the read current of the accessed cell, BL can 
also be discharged by the leakage from the unaccessed cells.  The 
read access time increases compared to a situation without any 
bitline leakage because it takes a longer time for a sufficient BL 
and BL  voltage difference to build up.  Fig. 5(b) shows the BL 
and BL  waveforms during the read access where the bitline 
sensing delay is increased from 0.35ns to 0.51ns due to the bitline 
leakage.  In the worst case, a faulty read may occur due to an 
extraordinarily large bitline leakage: i.e. BL may discharge faster 
than BL  in the given example.  A statistical analysis on the 
SRAM bitline delay has to be correctly performed to design 
SRAMs with high tolerance to the bitline leakage problem.  

   
 (a)            (c) 
Fig. 5 SRAM bitline leakage problem and accurate bitline 
delay modeling using proposed method. (a) Schematic of 
SRAM bitline illustrating bitline leakage problem; (b) 
waveforms of bitlines during read access; (c) estimated 3σ 
value of bitline delay for different approaches. 

The statistical leakage model developed in this paper can be 
used to accurately estimate the SRAM bitline leakage and the 
bitline delay distribution.  To test the proposed model, we built 
SRAM bitlines with different number of cells attached (i.e. 64, 
128, and 256).  The access transistors of the unaccessed SRAM 
cells were lumped into a single large NMOS device whose width 
that can be then expressed as a multiple of the reference device 
width W0.  VT of the reference devices was assumed to have a 
sigma of 15%.  Monte Carlo simulations were performed to 
obtain the bitline delay defined as the time for BL and BL to 
develop a voltage difference of 10%·Vdd.  Fig. 5(c) shows the 3σ 
bitline delay for different number of cells per bitline.  The 
estimation error is shown on top of the bars for the square-root 
method and proposed method.  As the bitline length increases, the 
estimation error of the conventional approach also increases and 
becomes as large as 11% while our proposed method maintains a 
high accuracy with less than 1% error.   

(b)
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5.2 Domino circuits: Keeper design 
The exponential increase in leakage with process scaling has a 

detrimental impact on domino gate performance and noise margin.  
As shown in Fig. 6(a), a static keeper is used to hold the dynamic 
node to high when none of the pull-down paths are evaluating.  
However, a large pull-down leakage can accidentally discharge the 
dynamic node voltage causing a non-recoverable false transition in 
the output.  Optimal sizing of keeper is important because an over-
sized keeper impacts the evaluation speed while an undersized 
keeper results in an insufficient noise margin [7].  Our proposed 
model can be used to estimate the pull-down leakage distribution 
and find out the optimal keeper size to maintain a sufficient noise 
margin.  Fig. 6(b) shows the simulated keeper sizes to achieve a 
target 3σ SNM of 15%·Vdd.  Here, SNM is defined as the DC input 
voltage to the pull-down network that will cause an equal rise in 
the domino gate output voltage.  Fig. 6(b) shows that due to the 
underestimation of leakage, the keeper sized based on the 
conventional method cannot meet the target SNM.  The proposed 
approach, on the other hand, suggests the precise keeper sizes to 
meet the SNM requirement. 

 
(a) 

 
     (b) 

Fig. 6 Domino circuit keeper sizing using proposed model. (a)  
Circuit schematic; (b) keeper sizing based on different 
approaches to maintain a target 3σ SNM of 15%·Vdd. 

6. CONCLUSIONS 
A precise statistical leakage model is indispensable in modern 

VLSI design because the leakage variation not only leads to 
unpredictable power consumption and system performance but 
also holds serious threat to the circuit functionality.  Statistically, 
leakage and VT of an individual device has a strong dependency on 
the device width due to microscopic RDF.  In this paper, we show 
that the conventionally used square-root model is inaccurate due to 
its incorrect modeling of the sum of lognormal distributions.  
Moreover, the previous method is not capable of handling leakage 
variation with spatial correlation.  We propose an analytical 
formula that can model the width-dependent VT shift for 
continuous device widths including spatial correlation. Monte 
Carlo simulations are performed to verify the accuracy of the 

proposed model.  Results show that the conventional square-root 
method can have an estimation error greater than 45% while the 
proposed method has an error below 5%.  Application of our 
models on leakage sensitive circuits such as SRAM and domino 
circuits are presented.  Simulations show that designs based on 
the conventional approach can fail to meet the performance or 
noise margin goals due to the underestimated leakage.  On the 
other hand, the bitline delay and domino gate robustness are 
accurately characterized using the proposed method.  
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