
Periodically Controlled Hybrid Systems

Verifying A Controller for An Autonomous Vehicle

Tichakorn Wongpiromsarn1, Sayan Mitra2,
Richard M. Murray1, and Andrew Lamperski1

1 California Institute of Technology
2 University of Illinois at Urbana Champaign

Abstract. This paper introduces Periodically Controlled Hybrid Au-
tomata (PCHA) for describing a class of hybrid control systems. In a
PCHA, control actions occur roughly periodically while internal and in-
put actions may occur in the interim changing the discrete-state or the
setpoint. Based on periodicity and subtangential conditions, a new suf-
ficient condition for verifying invariance of PCHAs is presented. This
technique is used in verifying safety of the planner-controller subsystem
of an autonomous ground vehicle, and in deriving geometric properties
of planner generated paths that can be followed safely by the controller
under environmental uncertainties.

1 Introduction

Alice, an autonomous vehicle built at Caltech, successfully accomplished two of
the three tasks at the National Qualifying Event of the 2007 DARPA Urban
Challenge [4], [17], [5]. In executing the third task, which involved making left-
turns while merging into traffic, its behavior was unsafe and almost led to a
collision. Alice was stuck at the corner of a sharp turn dangerously stuttering in
the middle of an intersection.

This behavior, it was later diagnosed, was caused by bad interactions between
the reactive obstacle avoidance subsystem (ROA) and the relatively slowly react-
ing path planner . The planner incrementally generates a sequence of waypoints
based on the road map, obstacles, and the mission goals. The ROA is designed
to rapidly decelerate the vehicle when it gets too close to (possibly dynamic)
obstacles or when the deviation from the planned path gets too large. Finally,
for protecting the steering wheel, Alice’s low-level controller limits the rate of
steering at low speeds. Thus, accelerating from a low speed, if the planner pro-
duces a path with a sharp left turn, the controller is unable to execute the turn
closely. Alice deviates from the path; the ROA activates and slows it down. This
cycle continues leading to stuttering. For avoiding this behavior, the planner
needs to be aware of the constraints imposed by the controller.

Finding this type of design bugs in hybrid control systems is important and
challenging. While real world hybrid systems are large and complex, they are also
engineered, and hence, have more structure than general hybrid automata [1].



Although restricted subclasses that are amenable to algorithmic analysis have
been identified, such as rectangular-initialized [6], o-minimal [8], planar [13],
and stormed [15] hybrid automata, they are not representative of restrictions
that arise in engineered systems. With the motivation of abstractly capturing
a common design pattern in hybrid control systems, such as Alice, and other
motion control systems [11], in this paper, we study a new subclass of hybrid
automata. Two main contributions of this paper are the following:

First, we define a class of hybrid control systems in which certain control
actions occur roughly periodically. Each control action sets the controlling input
to the plant or the physical process. In the interval between two consecutive
control actions, the state of the system evolves continuously and discretely, but
the control input remains constant. In particular, discrete state changes triggered
by an external source may changes the waypoint or the set-point of the controller,
which in turn may influence the computation of the next control input. For this
class of periodically controlled hybrid systems, we present a sufficient condition
for verifying invariant properties. The key requirement in applying this condition
is to identify subset(s) C of the candidate invariant set I, such that if the control
action occurs when the system state is in C, then the subsequent control output
guarantees that the system remains in I for the next period. The technique does
not require one to solve the differential equations, instead, it relies on checking
conditions on the periodicity and the subtangential condition at the boundary
of I. We are currently exploring the possibility of automating such checks using
quantifier elimination [3] and optimization [14].

Secondly, we apply the above technique to verify a sequence of invariant
properties of the planner-controller subsystem of Alice. From these invariants,
we are able to deduce safety. That is, the deviation —distance of the vehicle from
the planned path—remains within a certain constant bound. In the process, we
also derive geometric properties of planner paths that guarantee that they can
be followed safely by the vehicle.

The remainder of the paper is organized as follows: In Section 2 we briefly
present the key definitions for the hybrid I/O automaton framework. In Section 3
we present PCHA and a sufficient condition for proving invariance. In Sections 4
and 5 we present the formal model and verification of Alice’s Controller-Vehicle
subsystem. Owing to limited space, complete proofs for identifying the class of
safe planner paths appear in the full version of the paper available from [16].

2 Preliminaries

We use the Hybrid Input/Output Automata (HIOA) framework of [9,7] for mod-
eling hybrid systems and the state model-based notations introduced in [10]. A
Structured Hybrid I/O Automaton (SHIOA) is a non-deterministic state ma-
chine whose state may change instantaneously through a transition, or continu-
ously over an interval of time following a trajectory .

Let V be a set of variables. Each variable v ∈ V is associated with a type.
The set of valuations of V is denoted by val(V ). For a valuation v ∈ V al(V )



of set of variables V , its restriction to a subset of variables Z ⊆ V is denoted
by v d Z. A variable may be discrete or continuous. A trajectory for a set of
variables V models continuous evolution of the values of the variables over an
interval of time. Formally, a trajectory τ is a map from a left-closed interval of
R≥0 with left endpoint 0 to val(V ). The domain of τ is denoted by τ.dom. The
first state of τ , τ.fstate, is τ(0). A trajectory τ is closed if τ.dom = [0, t] for some
t ∈ R≥0, in which case we define τ.ltime

∆= t and τ.lstate
∆= τ(t). For a trajectory

τ for V , its restriction to a subset of variables Z ⊆ V is denoted by τ ↓ Z.
For given sets of input U , output Y , and internal X variables, a state model

S is a triple (F , Inv, Stop), where (a) F is a collection of Differential and
Algebraic Inequalities (DAIs) involving the continuous variables in U, Y, and X,
and (b) Inv and Stop are predicates on X called invariant condition and stopping
condition of S. Components of S are denoted by FS , InvS and StopS . S defines
a set of trajectories, denoted by traj(S), for the set of variables V = X ∪U ∪Y .
A trajectory τ for V is in the set trajs(S) iff (a) the discrete variables in X ∪Y
remain constant over τ ; (b) the restriction of τ on the continuous variables in
X ∪ Y satisfies all the DAIs in FS ; (c) at every point in time t ∈ dom(τ),
(τ ↓ X)(t) ∈ Inv; and (d) if (τ ↓ X)(t) ∈ Stop for some t ∈ dom(τ), then τ is
closed and t = τ.ltime.
Definition 1. A Structured Hybrid I/O Automaton (SHIOA) A is a tuple
(V,Q,Q0, A,D,S ) where (a) V is a set of variables partitioned into sets of
internal X, output Y and input U variables; (b) Q ⊆ val(X) is a set of states
and Q0 ⊆ Q is a nonempty set of start states; (c) A is a set of actions partitioned
into sets of internal H, output O and input I actions; (d) D ⊆ Q× A×Q is
a set of discrete transitions; and (e) S is a collection of state models for U , Y ,
and X, such that for every S,S ′ ∈ S , InvS∩InvS′ = ∅ and Q ⊆

⋃
S∈S InvS . In

addition, A satisfies: E1 Every input action is enabled at every state. E2 Given
any trajectory υ of the input variables U , any S ∈ S , and x ∈ InvS , there exists
τ ∈ trajs(S) starting from x, such that either (a) τ ↓ U = υ, or (b) τ ↓ U is a
proper prefix of υ and some action in H ∪O is enabled at τ.lstate.

For a set of state variables X, a state x is an element of V al(X). We denote
the valuation of a variable y ∈ X at state x, by the usual (.) notation x.y. A
transition (x, a,x′) ∈ D is written in short as x a→A x′ or as x a→ x′ when A is
clear from the context. An action a is said to enabled at x if there exists x′ such
that x a→ x′. We denote the components of a SHIOA A by XA, YA, etc.

An execution of A records the valuations of all its variables and the occur-
rences of all actions over a particular run. An execution fragment of A is a finite
or infinite sequence α = τ0a1τ1a2 . . . such that for all i in the sequence, ai ∈ A,
τ ∈ trajs(S) for some S ∈ S , and τi.lstate

ai+1→ τi+1.fstate. An execution frag-
ment is an execution if τ0.fstate ∈ Q0. An execution is closed if it is finite and
the last trajectory in it is closed. The first state of α, α.fstate, is τ0.fstate, and
for a closed α, its last state, α.lstate, is the last state of its last trajectory. The
limit time of α, α.ltime, is defined to be

∑
i τi.ltime. The set of executions and

reachable states of A are denoted by ExecsA and ReachA. A set of states I ⊆ Q
is said to be an invariant of A iff ReachA ⊆ I.



3 Periodically Controlled Hybrid Systems

In this section, we define a subclass of SHIOAs frequently encountered in appli-
cations involving sampled control systems and embedded systems with periodic
sensing and actuation. The main result of this section, Theorem 1, gives a suffi-
cient condition for proving invariant properties of this subclass.

A Periodically Controlled Hybrid Automaton (PCHA) is an SHIOA with a set
of (control) actions which occur roughly periodically. For the sake of simplicity,
we consider the PCHAs of the form shown in Figure 1, however, Theorem 1
generalizes to PCHAs with other input, output, and internal actions.

Let X ⊆ Rn, for some n ∈ N, and L,Z, and U be arbitrary types. Four key
variables of PCHA A are (a) continuous state variable s of type X , initialized
to x0, (b) discrete state (location or mode) variable loc of type L, initialized to
l0, (c) command variable z of type Z, initialized to z0, and (d) control variable
u of type U , initialized to u0. The now and next variables together trigger the
control action periodically.

PCHA A has two types of actions: (a) through input action update A learns
about new externally produced input commands such as set-points, waypoints.
When an update(z′) action occurs, z′ is recorded in the command variable z.
(b) The control action changes the control variable u. This action occurs roughly
periodically starting from time 0; the time gap between two successive occur-
rences is within [∆1,∆1 + ∆2] where ∆1 > 0,∆2 ≥ 0. When control occurs, loc
and s are computed as a function of their current values and that of z, and u is
computed as a function of the new values of loc and s.

For each l ∈ L the continuous state s evolves according to the trajectories
specified by state model smodel(l), i.e., according to the differential equation
ṡ = fl(s, u). The timing of control behavior is enforced by the precondition of
control and the stopping condition of the state models.

1signature

internal control, input update(z′ : Z)
3

variables
5internal s : X := x0

internal discrete loc : L := l0,
7z : Z := z0, u : U := u0

internal now : R≥0 := 0,
9next : R≥0 := −∆2

11transitions

input update(z′)

13eff z := z′

internal control
16pre now ≥ next

eff next := now + ∆1
18〈loc, s 〉:= h(loc, s, z); u := g(loc, s)

20trajectories
trajdef smodel(l : L)

22invariant loc = l
evolve d(now) = 1; d(s) = fl(s, u)

24stop when now = next + ∆2

Fig. 1. PHCA with parameters ∆1, ∆2, g, h, {fl}l∈L. See, for example, [10] for the
description of the language.

Describing and proving invariants. Given a candidate invariant set I ⊆ Q, we
are interested in verifying that ReachA ⊆ I. For continuous dynamical systems,



checking the well-known subtangential condition (see, for example [2]) provides a
sufficient condition for proving invariance of a set I that is bounded by a closed
surface. Theorem 1 provides an analogous sufficient condition for PCHAs. In
general, however, invariant sets I for PCHAs have to be defined by a collection
of functions instead of a single function. For each mode l ∈ L, we assume that
the invariant set Il ⊆ X for the continuous state is defined by a collection of
m boundary functions {Flk}m

k=1, where m is some natural number and each
Flk : X → R is a differentiable function3. Formally,

Il
∆= {s ∈ X | ∀k ∈ {1, . . . ,m}, Flk(s) ≥ 0} and I ∆= {x ∈ Q| x.s ∈ Ix.loc}.

Note that I does not restrict the values of the command or the control variables.
Lemma 1 modifies the standard inductive technique for proving invariance, so
that it suffices to check invariance with respect to Control transitions and Control-
free execution fragments. The proof appears in the full version [16].

Lemma 1. Suppose Q0 ⊆ I and the following two conditions hold:

(a) (Control steps) For each state x,x′ ∈ Q, if x control→ x′ and x ∈ I then x′ ∈ I,
(b) (Control-free fragments) For each closed execution fragment β = τ0 update(z1)

τ1 update(z2) . . . τn starting from a state x ∈ I where each zi ∈ Z, if
x.next− x.now = ∆1 and β.ltime ≤ ∆1 + ∆2, then β.lstate ∈ I.

Then ReachA ⊆ I.

Invariance of control steps can often be checked through case analysis which
can be partially automated using a theorem prover [12]. The next key lemma
provides a sufficient condition for proving invariance of control-free fragments.
Since, control-free fragments do not change the valuation of the loc variable, for
this part, we fix a value l ∈ L. For each j ∈ {1, . . . m}, we define the set ∂Ij

to be part of the set Il where the function Flj vanishes. That is, ∂Ij
∆= {s ∈

X | Flj(s) = 0}. In this paper, we call ∂Ij the jth boundary of Il even though
strictly speaking, the jth boundary of Il is only a subset of ∂Ij according on
the standard topological definition. Similarly, we say that the boundary of Il, is
∂Il =

⋃
j∈{1,...,m} ∂Ij .

Lemma 2. Suppose that there exists a collection {Cj}m
j=1 of subsets of Il such

that the following conditions hold:

(a) (Subtangential) For each s0 ∈ Il \Cj and s ∈ ∂Ij,
∂Flj(s)

∂s · fl(s, g(l, s0)) ≥ 0.
(b) (Bounded distance) ∃ cj > 0 such that ∀ s0 ∈ Cj , s ∈ ∂Ij, ||s− s0|| ≥ cj.
(c) (Bounded speed) ∃ bj > 0 such that ∀ s0 ∈ Cj , s ∈ Il, ||fl(s, g(l, s0))|| ≤ bj,
(d) (Fast sampling) ∆1 + ∆2 ≤ minj∈{1,...,m}

cj

bj
.

Then, any control-free execution fragment starting from a state in Il where next−
now = ∆1, remains within Il.

3 Identical size m of the collections simplifies our notation; different number of bound-
ary functions for different values of l can be handled by extending the theorem in
an obvious way.



In Figure 2, the control and control-free fragments
are shown by bullets and lines. A fragment starting
in I and leaving I, must cross ∂I1. Condition (a)
guarantees that if u is evaluated outside C1, then the
fragment does not leave Il because when it reaches
∂I1, the vector field governing its evolution points
inwards with respect to ∂I1. For a fragment start-
ing inside C1, condition (b) and (c) guarantee that
it takes finite time before it reaches ∂I1 and condi-
tion (d) guarantees that this finite time is at least
∆1 + ∆2; thus, before the trajectory crosses ∂I1, u
is evaluated again.

C

I
l

c

1

1

Fig. 2. An illustration for
Lemma 2 with m = 1.

Proof. We fix a control-free execution fragment β = τ0update(z1)τ1update(z2) . . . τn

such that at β.fstate, next − now = ∆1. Without loss of generality we assume
that at β.fstate, z = z1, loc = l, and s = x1, where z1 ∈ Z, l ∈ L and x1 ∈ Il.
We have to show that at β.lstate, s ∈ Il.

First, observe that for each k ∈ {0, . . . , n}, (τk ↓ s) is a solution of the
differential equation(s) d(s) = fl(s, g(l, x1)). Let τ be the pasted trajectory τ0

_

τ1
_. . . τn

4. Let τ.ltime be T . Since the update action does not change s, τk.lstate d
s = τk+1.fstate d s for each k ∈ {0, . . . , n − 1}. As the differential equations are
time invariant, (τ ↓ s) is a solution of d(s) = fl(s, g(l, x1)). We define the function
γ : [0, T ] → X as ∀ t ∈ [0, T ], γ(t) ∆= (τ ↓ s)(t). We have to show that γ(T ) ∈ Il.
Suppose, for the sake of contradiction, that there exists t∗ ∈ [0, T ], such that
γ(t∗) 6∈ Il. By the definition of Il, there exists i such that Fli(γ(0)) ≥ 0 and
Fli(γ(t∗)) < 0. We pick one such i and fix it for the remainder of the proof.
Since Fli and γ are continuous, from intermediate value theorem, we know that
there exists a time t1 before t∗ where Fli vanishes and that there is some finite
time ε > 0 after t1 when Fli is strictly negative. Formally, there exists t1 ∈ [0, t∗)
and ε > 0 such that for all t ∈ [0, t1], Fli(γ(t)) ≥ 0 and Fli(γ(t1)) = 0 and for all
δ ∈ (0, ε], Fli(γ(t1 + δ)) < 0.

Case 1: x1 ∈ Il \Ci. Since Fli(γ(t1)) = 0, by definition, γ(t1) ∈ ∂Ii. But from
the value of Fli(γ(t)) where t is near to t1, we get that ∂Fli

∂t (t1) = ∂Fli

∂s (γ(t1)) ·
fl(γ(t1), g(l, x1)) < 0. This contradicts condition (a).

Case 2: x1 ∈ Ci. Since for all t ∈ [0, t1], Fli(γ(t)) ≥ 0 and Fli(γ(t1)) = 0, we
get that for all t ∈ [0, t1], γ(t) ∈ Il and γ(t1) ∈ ∂Ii. So from condition (b) and
(c), we get ci ≤ ‖γ(t1)− x1‖ =

∥∥∥∫ t1
0

fl(γ(t), g(l, x1))dt
∥∥∥ ≤ bit1. That is, t1 ≥ ci

bi
.

But we know that t1 < t∗ ≤ T and periodicity of Control actions T ≤ ∆1 + ∆2.
Combining these, we get ∆1 + ∆2 > ci

bi
which contradicts condition (d).

For PCHAs with certain properties, the following lemma provides sufficient
conditions for the existence of the bounds bj and cj which satisfy the bounded
distance and bounded speed conditions of Lemma 2.
4 τ1

_ τ2 is the trajectory obtained by concatenating τ2 at the end of τ1.



Lemma 3. For a given l ∈ L, let Ul = {g(l, s) | l ∈ L, s ∈ Il} ⊆ U and suppose
Il is compact and fl is continuous in Il ×Ul. The bounded distance and bounded
speed conditions (of Lemma 2) are satisfied if Cj ⊂ Il satisfies the following
conditions: (a) Cj is closed, and (b) Cj ∩ ∂Ij = ∅.

Theorem 1 combines the above lemmas.

Theorem 1. Consider a PCHA A and a set I ⊆ QA. Suppose Q0A ⊆ I, A sat-
isfies control invariance condition of Lemma 1, and conditions (a)-(d) of Lemma
2 for each l ∈ LA. Then ReachA ⊆ I.

Although the PCHA of Figure 1 has one action of each type, Theorem 1 can
be extended for periodically controlled hybrid systems with arbitrary number
of input and internal actions. For PCHAs with polynomial vector-fields, given
the semi-algebraic sets Il and Cj , checking condition (a) and finding the cj and
bj which satisfy conditions (b) and (c) of Lemma 2 can be formulated as a
sum-of-squares optimization problem (provided that Cj and Il \ Cj are basic
semi-algebraic sets) or as an emptiness checking problem for a semi-algebraic
set. We are currently exploring the possibility of automatically checking these
conditions using SOSTOOLS [14] and QEPCAD [3].

4 System Model

In this section, we describe a subsystem of an autonomous ground vehicle (Alice)
consisting of the physical vehicle and the controller (see, Figure 3(a)). Vehicle
captures its the position, orientation, and the velocity of the vehicle on the
plane. Controller receives information about the state of the vehicle and period-
ically computes the input steering (φ) and the acceleration (a). Controller also
receives an infinite5 sequence of waypoints from a Planner and its objective is
to compute a and φ such that the vehicle (a) remains within a certain bounded
distance emax of the planned path, and (b) makes progress towards successive
waypoints at a target speed. Property (a) together with the assumption (possibly
guaranteed by Planner) that all planned paths are at least emax distance away
from obstacles, imply that the Vehicle does not collide with obstacles. While the
Vehicle makes progress towards a certain waypoint, the subsequent waypoints
may change owing to the discovery of new obstacles, short-cuts, and changes
in the mission plan. Finally, the Controller may receive an externally triggered
brake input, to which it must react by slowing the vehicle down.

Vehicle. The Vehicle automaton of Figure 3 specifies the dynamics of the au-
tonomous ground vehicle with acceleration (a) and steering angle (φ) as inputs.
It has two parameters: (a) φmax ∈ (0, π

2 ] is the physical limit on the steering
angle, and (b) L is the wheelbase. The main output variables of Vehicle are (a)
x and y coordinates of the vehicle with respect to a global coordinate system,
5 The verification technique can be extended in an obvious way to handle the case

where the vehicle has to follow a finite sequence of waypoints and halt at the end.



Planner

Controller

Vehicle

plan(p)

a, φ
x, y

θ, v

brake(b)

vehicle

p[seg]

p[seg + 1]

current seg.

θ

e2

e
1

d

1variables
output x: R:= x0; y: R:= y0;

3θ: R:= θ0; v: R:= v0
input a, φ: R

5

trajectories
7evolve d(x) = v cos(θ)

d(y) = v sin(θ)
9if |u.φ| ≤ φmax

then d(θ) = v
L tan(φ)

11else d(θ) = v
L tan( φ

|φ|φmax) fi

if v > 0 ∨ a ≥ 0
13then d(v) = a

else d(v) = 0 fi

Fig. 3. (a) Planner-Controller system. (b) Deviation & disorientation. (c) Vehicle.

(b) orientation θ of the vehicle with respect to the positive direction of the x
axis, and (c) vehicle’s velocity v. These variables evolve according to the dif-
ferential equations of lines 7–14. If the input steering angle φ is greater than
the maximum limit φmax then the maximum steering in the correct direction
is applied. The acceleration can be negative only if the velocity is positive, and
therefore the vehicle cannot move backwards. The controller ensures that the
input acceleration is always within such a bound.

Controller. Figure 4 shows the SHIOA specification of the Controller automaton
which reads the state of the Vehicle periodically and issues acceleration and
steering outputs to achieve the aforementioned goals.

Controller is parameterized by: (a) the sampling period ∆ ∈ R+ , (b) the
target speed vT ∈ R≥0, (c) proportional control gains k1, k2 > 0, (d) a constant
δ > 0 relating the maximum steering angle and the speed, and (e) maximum
and braking accelerations amax > 0 and abrake < 0. Restricting the maximum
steering angle instead of the maximum steering rate is a simplifying but con-
servative assumption. Given a constant relating the maximum steering rate and
the speed, there exists δ as defined above which guarantees that the maximum
steering rate requirement is satisfied.

A path is an infinite sequence of points p1, p2, . . . where pi ∈ R2, for each i.
The main state variables of Controller are the following: (a) brake and new path
are command variables, (b) path is the current path being followed by Controller,
(c) seg is the index of the last waypoint visited in the current path. That is,
path[seg + 1 ] is the current waypoint. The straight line segment joining path[seg ]
and path[seg + 1 ] is called the current segment . (d) deviation e1 is the signed
perpendicular distance of the vehicle to the current segment (see, Figure 3(b)).
(e) disorientation e2 is the difference between the current orientation of the
vehicle (θ) and the angle of the current segment. (f) waypoint-distance d is the
signed distance of the vehicle to the current waypoint measured parallel to the
current segment.



signature

2input plan(p:Seq[R]), brake(b:{On,Off})
internal main

4

variables
6input x, y, θ, v: R

output a, φ: R := (0, 0)
8internal brake: {On, Off} := Off

path: Seq[R2] := arbitrary, seg: N := 1

10new path: Seq[R2] := path
e1, e2, d : R := [e1,0, e2,0, d0 ]

12now: R := 0; next:R≥0 := 0

14transitions
input plan(p) eff new path := p

16

input brake(b) eff brake := b
18

internal main
20pre now = next

eff next := now + ∆
22if path 6= new path ∨ d ≤ 0 then

if path 6= new path
24then seg := 1; path := new path

elseif d ≤ 0
26then seg := seg + 1 fi

let p =

"
path[seg + 1].x − path[seg].x

path[seg + 1].y − path[seg].y

#

28q =

"
path[seg + 1].y − path[seg].y

−(path[seg + 1].x − path[seg].x)

#

r =

"
path[seg + 1].x − x

path[seg + 1].y − y)

#
30e1 := 1

‖q‖q · r; e2 := θ − ∠p

d := 1
‖p‖p · r fi

32

let φd = −k1 e1 − k2 e2

34φ =
φd
|φd|

min(δ × v, |φd|)

36if brake = On then a := abrake

elseif brake = Off ∧ v < vT

38then a := amax else a := 0 fi

40trajectories
d(now) = 1; d(d) = -v cos(e2)

42d(e1) = v sin(e2); d(e2) = v
L tan(φ)

stop when now = next

Fig. 4. Controller with parameters vT ∈ R≥0, k1, k2, δ, ∆ ∈ R+ and abrake < 0.

The brake(b) action is an externally controlled input action which informs the
Controller about the application of an external brake (b = On) or the removal of
the brake (b = Off ). When brake(b) occurs, b is recorded in brake. The plan(p)
action is controlled by the external Planner and it informs the Controller about
a newly planned path p. When this action occurs, the path p is recorded in
new path. The main action occurs once every ∆ time starting from time 0 and
updates e1 , e2 , d , path, seg , a and φ as follows: A. if new path is different from
path then seg is set to 1 and path is set to new path. B. Otherwise, if the
waypoint-distance d is less than or equal to 0, then seg is set to seg +1 (line 26).
For both of the above cases several temporary variables are computed which
are in turn used to update e1 , e2 , d as specified in Lines 30-31; otherwise these
variables remain unchanged. C. The steering output to the vehicle φ is computed
using proportional control law and it is restricted to be at most δ times the
velocity of the vehicle. This constraint is enforced for the mechanical protection
of the steering. The steering output φ is set to the minimum of −k1e1−k2e2 and
v×δ (line 34). D. The acceleration output a is computed using bang bang control
law. If brake is On then a is set to the braking deceleration abrake; otherwise, it
executes amax until the vehicle reaches the target speed, at which point a is set
to 0.

Along a trajectory, the evolution of the variables are specified by the dif-
ferential equations on lines 41-43. These differential equations are derived from
the update rules described above and the differential equations governing the
evolution of x, y, θ and v.



Complete System. Let A be the composition of the Controller and the Vehicle
automata. It can be checked easily that the composed automaton A is a PCHA.
The key variables of A corresponding to those of PCHA are (a) a continuous vari-
able 〈x, y, θ, v, e1, e2, d〉 of type X = R7, (b) a discrete variable 〈brake, path, seg〉
of type L = Tuple[{On,Off }, Seq[R2], N], (c) a control variable 〈a, φ〉 of type
U = R2, and (d) two command variables z1

∆= brake of type Z1 = {On,Off }
and z2 = path of type Z2 = Seq[R2]. For convenience, we define a single derived
variable s

∆= 〈x, y, θ, v, e1, e2, d〉 encapsulating the continuous variable of A. The
input update actions of A are brake(b) and plan(p). The command variables z1

and z2 store the values b and p, respectively, when these actions occur. An inter-
nal control action main occurs every ∆ time, starting from time 0. That is, values
of ∆1 and ∆2 as defined in a generic PCHA are ∆1 = ∆ and ∆2 = 0. The control
law function g and the state transition function h of A can be derived from the
specification of main action in Figure 4. Let g = 〈ga, gφ〉 where ga : L × X → R
and gφ : L × X → R represent the control law for a and φ, respectively, and let
h = 〈hs,1, . . . , hs,7, hl,1, hl,2, hl,3〉 where hs,1, . . . , hs,7 : L × X × Z1 × Z2 → R
describe the discrete transition of x, y, θ, v, e1, e2 and d components of s, and
hl,1 : L × X × Z1 × Z2 → {On,Off }, hl,2 : L × X × Z1 × Z2 → Seq[R2] and
hl,3 : L × X × Z1 × Z2 → N describe the discrete transition of brake, path
and seg, respectively. The definition of g and h appears in [16]. From the state
models of Vehicle and Controller automata specified on line 14 of Figure 3 and
lines 41-42 of Figure 4, we see that A only has one state model. For any value
of l ∈ L, the continuous state s evolves according to the differential equation
ṡ = f(s, u) where f = 〈f1, f2, . . . , f7〉 and f1, . . . , f7 : X ×U → R are associated
with the evolution of the x, y, θ, v, e1, e2 and d components of s, respectively.

5 Analysis of the System

Overview. The informally stated goals of the system translate to the following:

A. (safety) At all reachable states of A, the deviation (e1) of the vehicle is upper-
bounded by emax, where emax is determined in terms of system parameters.

B. (segment progress) There exist certain threshold values of deviation, disori-
entation, and waypoint-distance such that from any state x with greater
deviation, disorientation and waypoint-distance, the vehicle reduces its devi-
ation and disorientation with respect to the current segment, while making
progress towards its current waypoint.

C. (waypoint progress) The vehicle reaches successive waypoints.

In Sections 5.1 and 5.2, we define a family {Ik}k∈N of subsets of QA and using
Lemma 2 and Lemma 3, we conclude that they are invariant with respect to
the control-free execution fragments of A. From the specification of main action,
we see that the continuous state changes only occurs if path 6= new path or
waypoint-distance d ≤ 0. Hence, using Theorem 1, we conclude that any execu-
tion fragment starting in Ik remains within Ik, provided that path and current
segment do not change. In Section 5.3, we discuss the proofs for properties (B)



and (C) and the derivation of geometric properties of planner paths that can be
followed by A safely. Complete proofs appear in the full version [16].

5.1 Assumptions and Family of Invariants

We define, for each k ∈ N, the set Ik which bounds the deviation of the vehicle
e1 to be within [−εk, εk]. This bound on deviation alone, of course, does not
give us an inductive invariant. If the deviation is εk and the vehicle is highly
disoriented, then it would violate Ik. Thus, Ik also bounds the disorientation
such that the steering angle computed based on the proportional control law is
within [−φk, φk]. To prevent the vehicle from not being able to turn at low speed
and to guarantee that the execution speed of the controller is fast enough with
respect to the speed of the vehicle, Ik also bounds the speed of the vehicle. Ik

is defined in terms of εk, φk ≥ 0 as Ik
∆= {x ∈ Q | ∀i ∈ {1, . . . 6}, Fk,i(x.s) ≥ 0}

where Fk,1, . . . , Fk,6 : R7 → R are defined as follows:

Fk,1(s) = εk − s.e1; Fk,2(s) = εk + s.e1; Fk,3(s) = φk + k1s.e1 + k2s.e2;
Fk,4(s) = φk − k1s.e1 − k2s.e2; Fk,5(s) = vmax − s.v; Fk,6(s) = δs.v − φb.

Here vmax = vT + ∆amax and φb > 0 is an arbitrary constant. As we shall see
shortly, the choice of φb affects the minimum speed of the vehicle and also the re-
quirements of a brake action. We examine a state x ∈ Ik, that is, Fk,i(x.s) ≥ 0 for
any i ∈ {1, . . . 6}. Fk,1(s), Fk,2(s) ≥ 0 means s.e1 ∈ [−εk, εk]. Fk,3(s), Fk,4(s) ≥ 0
means that the steering angle computed based on the proportional control law
is in the range [−φk, φk]. Further, if φk ≤ φmax, then the computed steering sat-
isfies the physical constraint of the vehicle. If, in addition, we have φb ≥ φk and
Fk,6(s) ≥ 0, then the vehicle actually executes the computed steering command.
Fk,5(s) ≥ 0 means that the speed of the vehicle is at most vmax.

For each k ∈ N, we define θk,1 = k1
k2

εk − 1
k2

φk and θk,2 = k1
k2

εk + 1
k2

φk, that
is, the values of e2 at which the proportional control law yields the steering
angle of φk and −φk respectively, given that the value of e1 is −εk. From the
above definitions, we make the following observations about the boundary of the
Ik sets: for any k ∈ N and x ∈ Ik, x.e2 ∈ [−θk,2, θk,2], Fk,1(x.s) = 0 implies
x.e2 ∈ [−θk,2,−θk,1], Fk,2(x.s) = 0 implies x.e2 ∈ [θk,1, θk,2], Fk,3(x.s) = 0
implies x.e2 ∈ [−θk,2, θk,1], and Fk,4(x.s) = 0 implies x.e2 ∈ [−θk,1, θk,2].

We assume that φb and all the ε′ks and φk’s satisfy the following assumptions
that are derived from physical and design constraints on the controller. The
region in the φk,εk plane which satisfies Assumption 1 can be found in [16].

Assumption 1. (Vehicle and controller design) (a) φk ≤ φb ≤ φmax and φk < π
2

(b) 0 ≤ θk,1 ≤ θk,2 < π
2 (c) L cot φk sin θk,2 <

k2
k1

(d) ∆ ≤ c
b where c = 1q

k2
1+k2

2
(φk − φ̃),

b = vmax

q
sin2 θk,2 + 1

L2 tan2(φ̃) and φ̃ = cot−1
“

k2
k1L sin θk,2

”
.

If the vehicle is forced to slow down too much at the boundary of an Ik by
the brakes, then it may not be able to turn enough to remain inside Ik. Thus, in
verifying the above properties we need to restrict our attention to good executions
in which brake inputs do not occur at low speeds and are not too persistent. This
is formalized by the next definition.



Definition 2. A good execution is an execution α that satisfies: if a brake(On)
action occurs at time t then (a) α(t).v > φb

δ + ∆|abrake|, (b) brake(Off ) must
occur within time t + 1

|abrake| (α(t).v − φb

δ −∆|abrake|).
For the remainder of this section, we only consider good executions. A state

x ∈ QA is reachable if there exists a good execution α with α.lstate = x.

5.2 Invariance Property

We fix a k ∈ N for the remainder of the section and denote Ik, Fk,i as I and Fi,
respectively, for i ∈ {1, . . . , 6}. As in Lemma 2, we define I = {s ∈ X |Fi(s) ≥ 0}
and for each i ∈ {1, . . . , 6}, ∂Ii = {s ∈ X | Fi(s) = 0} and let the functions
f1, f2, . . . , f7 : R7 × R2 → R describe the evolution of x, y, θ, v, e1, e2 and d,
respectively. We prove that I satisfies the control-free invariance condition of
Lemma 1 by applying Lemma 2.

First, we show that all the assumptions in Lemma 2 are satisfied. All the proof
appears in the full version [16] which do not involve solving differential equations
but require algebraic simplification of the expressions defining the vector fields
and the boundaries {∂Ii}i∈{1,...6} of the invariant set.

The next lemma shows that the subtangential, bounded distance and bounded
speed conditions (of Lemma 2) are satisfied. The proof for j = 5 is presented
here as an example. The rest of the proof is provided in [16].
Lemma 4. For each l ∈ L and j ∈ {1, . . . , 6}, the subtangential, bounded dis-
tance, and bounded speed conditions (of Lemma 2) are satisfied.

Proof. Define C5
∆= {s ∈ I | s.v ≤ vT }. We apply Lemma 3 to prove the

bounded distance and the bounded speed conditions. First, note that the pro-
jection of I onto the (e1, e2, v) space is compact and C5 is closed. Let UI =
{g(l, s) |l ∈ L, s ∈ I}. From the definition of I, it can be easily checked that
f is continuous in I × UI . In addition, s.v = vmax for any s ∈ ∂I5. Since
amax,∆ > 0, vmax = vT + ∆amax > vT . Therefore, C5 ∩ ∂I5 = ∅. Hence, from
Lemma 3, the bounded distance and bounded speed conditions are satisfied. To
prove the subtangential condition, we pick an arbitrary s ∈ ∂I5 and s0 ∈ I \C5.
From the definition of I and C5, vT < s0.v ≤ vmax. Therefore, for any l ∈ L,
either f4(s, g(s0, l)) = 0 or f4(s, g(s0, l)) = abrake and we can conclude that
∂F5
∂s · f(s, g(s0, l)) = −f4(s, g(s0, l)) ≥ 0.

From the definition of each Cj , we can derive the lower bound cj on the
distance from Cj to ∂Ij and the upper bound bj on the length of the vector field
f where the control variable u is evaluated when the continuous state s ∈ Cj .
Using these bounds and Assumption 1(d), we prove the sampling rate condition.

Lemma 5. For each l ∈ L, the sampling rate condition is satisfied.
Thus, all assumptions in the hypothesis of Lemma 2 are satisfied; from The-

orem 1 we obtain that good execution fragments of A preserve invariance of I,
provided that the path and current segment do not change over the fragment.

Theorem 2. For any plan-free execution fragment β starting at a state x ∈ I
and ending at x′ ∈ QA, if x.path = x.new path and x.seg = x′.seg, then x′ ∈ I.



5.3 Identifying Safe Planner Paths: An Overview

From invariance of Ik’s, we first show progress from Ik to Ik+1 and then identify
a class of planner paths that can be safely followed by A. Owing to limited space,
we describe the key steps in this analysis. The complete proofs appear in [16].

From Theorem 2, we know that for each k ∈ N, Ik is an invariant of A
with respect to execution fragments in which the path and the current segment
do not change. First, we show that for each k, starting from any reachable
state x in Ik, any reachable state x′ is in Ik′ ⊆ Ik, where k′ = k + n and n =
max(bx.d−x′.d

vmax∆ c−1, 0). Recall that Ik and Ik′ are defined in terms of the deviation
and the disorientation bounds εk, φk and εk′ , φk′ , respectively. We show that for
each k, there exist nonnegative constants ak and bk, with εk+1 = εk − ak and
φk+1 = φk−bk, for which the above progress condition is satisfied. Furthermore,
for k smaller than the threshold value k∗, we show that ak and bk are strictly
positive, that is, Ik′ ( Ik. This essentially establishes property (B), that is, upto
a constant threshold, the vehicle makes progress towards reducing the deviation
and disorientation with respect to its current waypoint, provided the waypoint
distance is large enough. Figure 5 shows a sequence of shrinking Ik’s visited by
A in making progress towards a waypoint.

Next, we derive a sufficient condition on planner paths that can be safely
followed with respect to a chosen set Ik whose parameters εk ∈ [0, emax] and
φk ∈ [0, φmax] satisfy Assumption 1. The choice of Ik is made such that it is
the smallest invariant set containing the initial state Q0A. The key idea in the
condition is: longer path segments can be succeeded by sharper turns. The proof is
based on an invariant relationship R amongst the deviation, the disorientation,
and waypoint distance. Following a long segment, the vehicle reduces its devi-
ation and disorientation by the time it reaches the end, and thus, it is possible
for the vehicle to turn more sharply at the end without breaking the invariance
of Ik and the relationship R.

Assumption 2. (Planner paths) Let p0, p1, . . . be a planner path; for i ∈ {0, 1, . . .},
let λi be the length of the segment pipi+1 and σi be the difference in orientation
of pipi+1 and that of pi+1pi+2. Then,

(a) λi ≥ 2vmax∆ + εk.
(b) Let n = k+bλi−εk−2vmax∆

vmax∆ c. Then, λi and σi satisfy the following conditions:
(a) εn ≤ 1

| cos σi| (εk − vmax∆| sin(σi|) and (b) φn ≤ φk − k1vmax∆ sin |σi| −
k1εn(1 − cos σi) − k2|σi| where, given εk and φk, εj and φj are defined re-
cursively for any j > k by εj = εj−1 − aj−1 and φj = φj−1 − bj−1.

The relationship between λ and the maximum value of σ which satisfies
this assumption is shown in Figure 5. The choice of εk’s and φk’s affects both
the requirements on a safe path (Assumption 2) and the definition of good
executions. Larger εk’s and φk’s allow sharper turns in planned paths but forces
brakes to occur only at higher speeds. This tradeoff is related to the design flaw
of Alice as discussed in the introduction of the paper. Without having quantified
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the tradeoff, we inadvertently allowed a path to have sharp turns and also brakes
at low speeds—thus violating safety.

Consider a path that satisfies Assumption 2. Further assuming that (a) a new
planner path begins at the current position, (b) Vehicle is not too disoriented
with respect to the new path, and (c) Vehicle speed is not too high, we establish
that Ik is an invariant of A. Since for any state x ∈ Ik, |x.e1| ≤ εk ≤ emax,
invariance of Ik guarantees the safety property (A). For property (C), we note
that for any state x ∈ Ik, there exists vmin > 0 such that x.v ≥ vmin > 0
and |x.e2| ≤ θk,2 < π

2 , that is, ḋ = f7(x.s, u) ≤ −vmin cos θk,2 < 0 for any
u ∈ U . Thus, it follows that the waypoint distance decreases and the vehicle
makes progress towards its waypoint.

The simulation results are shown in Figure 6 which illustrate that the vehicle
is capable of making a sharp left turn, provided that the path satisfies Assump-
tion 2. In addition, we are able to replicate the stuttering behavior described in
the Introduction when Assumption 2 is violated.
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